摘要
研究带有小参数的二阶拟线性微分方程的边值问题:εy″=f(t,y)y′+g(t,y),y(0,ε)=A,y(l,ε)=B.这里f(t,y) 0且f(0,y)=0.利用微分不等式的相关理论,得到该问题的摄动解关于其退化解的渐近性及误差估计.
Tht paper researches boundary value problem for second order semilinear differential equation with a small positive parameter where dy Using the theory of differential inequatity we obtain asympotics and approxmate benhavior for the perturbed solution to its reduced solution.
出处
《宁德师专学报(自然科学版)》
2004年第4期339-340,共2页
Journal of Ningde Teachers College(Natural Science)
关键词
边值问题
奇摄动
拟线性
小参数
边界层
渐近性
二阶
化解
指数
理论
singular perturbation
differential inequation
solution of reduced problem
boundary value peoblem
semilinear