期刊文献+

基于协作协进化的多Agent协作机制的研究

A study of multi-agent cooperation mechanism basedon cooperative co-evolution
下载PDF
导出
摘要 协作问题是自主多智能体机器人系统研究的关键问题之一。基于多智能体机器人系统的CCP协作协议所生成的各Agent的任务序列依赖于目标的初始顺序,难以得到优化解。提出了一种利用协作协进化实现多Agent协作的机制,采用多种群协作生成多Agent系统的任务执行序列,在给定的任务分解所产生的所有可行解中寻找优化解,从而达到优化系统的性能的目的。利用该机制,对3个智能体协作搬运8个物体进行计算机模拟,结果表明,该方法在优化任务执行序列方面作用明显,从而能有效提高多智能体机器人系统的协作性能。 Cooperation is one of the key problems of the autonomous multi-agent robotic systems. The task sequences created by CCP of the multi-agent robotic systems are dependent on the initiated sequence of the objects, it is difficult to create the optimized solutions. In this paper, a cooperative mechanism is proposed, which realize the cooperation of multi-agent by cooperative co-evolution. The multiple population cooperation is used to create the task implementing sequences of the multi-agent system, and optimized solutions are searched from all feasible solutions based on task decompose. So that the performance of the system is optimized. Experiment that three agents move eight objects cooperatively has been done. Results show that the proposed cooperative mechanism can optimize the implementing sequence of the task evidently, and improve the performance of the system effectively.
作者 汤琼 杨东勇
出处 《浙江工业大学学报》 CAS 2004年第5期526-530,577,共6页 Journal of Zhejiang University of Technology
基金 浙江省自然科学基金(601078)
  • 相关文献

参考文献15

  • 1Fang-chang lin,Jane yung-jen hsu. Cooperation protocols in multi-agent robotic systems[J]. Autonomous Robots, 1997,(4):175-198.
  • 2Paredis J. Coevolutionary computation[J]. A Artificial Life,1995,2(4).. 355-375 .
  • 3Bugajska, Magdalena D, Alan C Schultz. Co-evolution of form and function in the design of autonomous agents: micro air vehicle project[A]. GECCO-2000 Workshop on Evolution of Sensors in Nature, Hardware and Simulation[C]. Cambridge,Mass: MIT Press, 2000. 240-244.
  • 4Hillis D. Co-evolving parasites improves simulated evolution as an optimization procedure[A]. Langton, Taylor C, Farmer J, Rasmussen S, Artificial Life Ⅱ[C]. Reading, MA: Addison-Wesley, 1992. 313-324.
  • 5Lund H, Hallam J, Lee W. A hybrid gp/ga approach for co-evolving controllers and robot bodies to achieve fitness-specified tasks[A]. International Conference on Evolutionary Computation[C]. IEEE Press: Proceedings of IEEE 3rd, 1997. 384-389.
  • 6Pollack J and Blair A. Co-evolution in the successful learning of backgammon strategy[J]. Machine Learning, 1998,32(3):341-243.
  • 7Mitchell A Potter, Lisa Meeden, Alan C Schultz. Heterogeneity in the coevolved behaviors of mobile robots: The Emergence of specialists[A]. Proceedings of The Seventeenth International Conference on Artificial Intelligence[C]. Washington: Seattle, 2001.1 337-1 343.
  • 8薛宏涛,沈林成,朱华勇,常文森.基于协进化的多智能体系统仿真框架及其面向对象设计与实现[J].机器人,2001,23(5):421-425. 被引量:5
  • 9薛宏涛,沈林成,叶媛媛,常文森.基于协进化方法的多智能体协作系统体系结构及其仿真框架[J].系统仿真学报,2002,14(3):297-299. 被引量:9
  • 10Narendra Puppala,Sandip Sen, Maria Gordin. Shared memory based cooperative coevolution[A]. World Congress on Computational Intelligenee[C]. IEEE Press, 1998. 570-574.

二级参考文献10

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部