关于τ-可测算子的依测度收敛性(英文)
On Convergence in the Measure Topology of τ-measurable operators
摘要
文献 [1]中得到了 τ-可测算子序列依测度拓扑收敛的判别法 .
In [1] giving an equivalent exposition on convergence in the measure topology of τ-measurable operators, we put it in some applications.
出处
《新疆大学学报(自然科学版)》
CAS
2004年第4期343-346,356,共5页
Journal of Xinjiang University(Natural Science Edition)
二级参考文献8
-
1[1]Nelson E. Notes on non-commutative integration[J]. J Funct Anal, 1974, 15: 103-116.
-
2[2]Fack T, Kosaki H. Generalized s-numbers of τ-measure operators[J]. Pac J Math, 1986, 123: 269-300.
-
3[3]Hansen F. An operator inequality[J]. Math Ann, 1980, 246: 249-250.
-
4[4]Kosaki H. On the continuity of the map φ→ |φ| from the predual of a W* -algebra[J]. J Funct Anal,1984, 59: 123-131.
-
5[5]Kosaki H. Applications of uniform convexity of non-commutative Lp spaces[J]. Trans Amer Math Soc,1984, 283: 265-282.
-
6[6]Bhatia R. Matrix Analysis[M]. Graduate Texts in Mathematics169, Springer, 1997.
-
7[7]Segal I E. A non-commutative extension of abstract integration[J]. Ann of Math, 1953, 57: 401-457.
-
8[8]Takesaki M. Theory of Operator AlgebrasI[M]. Springer, Berlin-Heidelberg-New York, 1979.
-
1张雄伟.L-fuzzy N-收敛空间[J].模糊系统与数学,2013,27(4):61-66.
-
2吐尔德别克.关于依测度拓扑收敛(英文)[J].应用泛函分析学报,2004,6(1):5-9. 被引量:1
-
3邢志勇.拓扑空间上的一个群拓扑收敛性问题[J].江汉大学学报(自然科学版),2011,39(4):5-6. 被引量:2
-
4王芳,方嘉琳.集值映射的拓扑收敛[J].数学杂志,1991,11(4):368-377.
-
5陈秋燕,寇辉.拟连续domain的网式刻画[J].四川大学学报(自然科学版),2014,51(3):433-435. 被引量:5
-
6崔瑶,郭润玺.集值映射网的拓扑收敛[J].黑龙江大学自然科学学报,1993,10(2):28-32.
-
7KONG Fanliang.The estimation-valued property of B-valued asymptotic martingale[J].Progress in Natural Science:Materials International,2006,16(7):773-776. 被引量:2
-
8侯吉成.Fell-拓扑的某些性质(英文)[J].数学研究,2001,34(1):32-42.
-
9侯仁恩.集值映射序列的锥弱次微分的拓朴收敛性[J].上饶师范学院学报,2004,24(3):5-8. 被引量:1
-
10杨小飞.L-滤子收敛结构的对角化条件[J].模糊系统与数学,2016,30(1):153-156.