期刊文献+

关于τ-可测算子的依测度收敛性(英文)

On Convergence in the Measure Topology of τ-measurable operators
下载PDF
导出
摘要 文献 [1]中得到了 τ-可测算子序列依测度拓扑收敛的判别法 . In [1] giving an equivalent exposition on convergence in the measure topology of τ-measurable operators, we put it in some applications.
出处 《新疆大学学报(自然科学版)》 CAS 2004年第4期343-346,356,共5页 Journal of Xinjiang University(Natural Science Edition)
关键词 可测 依测度收敛 算子 判别法 子序列 拓扑 测算 measurable operator measure topology vonNeaumann algebra.
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Nelson E. Notes on non-commutative integration[J]. J Funct Anal, 1974, 15: 103-116.
  • 2[2]Fack T, Kosaki H. Generalized s-numbers of τ-measure operators[J]. Pac J Math, 1986, 123: 269-300.
  • 3[3]Hansen F. An operator inequality[J]. Math Ann, 1980, 246: 249-250.
  • 4[4]Kosaki H. On the continuity of the map φ→ |φ| from the predual of a W* -algebra[J]. J Funct Anal,1984, 59: 123-131.
  • 5[5]Kosaki H. Applications of uniform convexity of non-commutative Lp spaces[J]. Trans Amer Math Soc,1984, 283: 265-282.
  • 6[6]Bhatia R. Matrix Analysis[M]. Graduate Texts in Mathematics169, Springer, 1997.
  • 7[7]Segal I E. A non-commutative extension of abstract integration[J]. Ann of Math, 1953, 57: 401-457.
  • 8[8]Takesaki M. Theory of Operator AlgebrasI[M]. Springer, Berlin-Heidelberg-New York, 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部