期刊文献+

神经网络多目标同步优化HPMC缓释片处方 被引量:10

An artificial neural network for multi-objective simultaneous optimization of HPMC sustained release tablet formulations
下载PDF
导出
摘要 目的 通过建立BP神经网络模型,预测HPMC缓释片中药物释放;并和优化算法结合实现缓释片处方的多目标同步优化。方法 选取溶解度为难溶到略溶的5种药物(别嘌醇,甲氧苄氨嘧啶,阿昔洛韦,替硝唑,对乙酰氨基酚)作为模型药物,压制HPMC骨架片,并进行体外释放情况考察,考察52个处方中药物的溶解度、含药量、HPMC的量、HPMC的固有黏度、辅料的量、黏合剂的浓度、溶出仪的转速对药物释放情况的影响。将各因素作为神经网络的输入,药物的累计释放量作为输出,对网络进行训练,建立BP神经网络模型,并和优化算法相结合实现以对乙酰氨基酚、甲氧苄氨嘧啶、米诺地尔、氧氟沙星为模型药物,在不同的含药量、不同转速的条件下对处方进行优化。结果 利用神经网络预测药物的释放,训练处方和测试处方的实测值和预测值能很好吻合,4个优化处方的释放值均和目标值很接近。结论 神经网络可用于预测不同药物不同处方组成的HPMC缓释片中药物的释放,并能同步优化HPMC缓释骨架片的处方。 OBJECTIVE: To use the artificial neural network (ANN) to predict drug release from HPMC matrix tablets and optimize the formulations of sustained release tablets. METHODS: 52 formulations of five model drugs(trimethoprim, paracetamol, allopurinol, aciclovir, tinidazole)with different solubility were prepared. Drug solubility, the amount of loaded drug in tablets, the amounts of HPMC, the intrinsic viscosity of HPMC, the amounts of MCC, the concentration of PVP in the binder, and the rotation speed of dissolution machine were selected as independent factors. The accumulation release at 6 sampling times was worked as dependent factors. The series of dependent factors and independent factors were used as tutorial data for ANN to train BP network. The trained network was used to predict drug release. combined with optimization tool, ANNS optimized four sustained release tablets formulations of 4 model drugs(minoxidilum, ofloxacin, trimethoprim and paracetamol). RESULTS: There was very good agreement between the ANN predicted and observed release profiles of both training formulations and testing formulations. The drug release parameters of four optimal formulations were close to the target values. CONCLUSION: ANN is able to precisely predict the release of drug with various solubility in different formulations and different rotation speeds of dissolution machine. ANN is suitable for multi-objective simultaneous optimization of HPMC sustained release tablet formulations.
机构地区 浙江大学药学院
出处 《中国药学杂志》 EI CAS CSCD 北大核心 2004年第10期768-771,共4页 Chinese Pharmaceutical Journal
关键词 人工神经网络 多目标同步优化 HPMC 缓释片 Alcohols Drug products Optimization Patient treatment
  • 相关文献

参考文献8

  • 1[1]The Dow Chemical Company. Using methocel cellulose ethers for controlled release of drugs in hydrophilic matrix system[DB/OL]. http://www. dow. com/methocel 2002-11-6/2003-11-7.
  • 2[2]Ranga KVR, Devi KP, Buri P. Influence of molecular size and water solubility of the solute on its release from swelling and erosion controlled polymeric matrices [ J ] . J Controlled Release, 1990, 12 ( 1 ):133.
  • 3[3]The Dow Chemical Company. Methocel cellulose ethers technical handbook[DB/OL]. http://www. dow. com/methocel 1996-6-17/2003-11-7.
  • 4[4]Philip KS, John CRN, Skoug W. Effect of formulation variable on drug and polymer release from HPMC-bases matrix tablets [ J ] . Int J Pharm,1996,142(1):53.
  • 5[5]Soltero R, Krailler R, Czeisler J.The effect of pH, ionic concentration and Ionic species of dissolution media on the release rates of quindine gluconate sustained release forms [ J ] . Drug Devel Industl Pharm,1991,17(1): 113.
  • 6魏晓红,吴建军,梁文权.神经网络用于口服缓释制剂的处方设计[J].药学学报,2001,36(9):690-694. 被引量:12
  • 7叶婷,魏晓红,梁文权,吴建军.神经网络在预测难溶性药物从HPMC骨架片中释放的应用[J].中国药学杂志,2002,37(10):758-760. 被引量:6
  • 8[9]Takahara J, Takayama K, Nagai T. Multi-objective simultaneous optimization technique based on an artificial neural network in sustained release formulations[J]. J Controlled Release, 1997,49( 1 ): 11.

二级参考文献6

  • 1王重庆 李云兰.高级生化实验教程[M].北京:北京大学出版社,1994.44-46.
  • 2傅崇孙.人工智能及其应用[M].北京:清华大学出版社,1987.221.
  • 3Kenji N,J Pharm Pharm Sci,1998年,1卷,3期,95页
  • 4Hong Q,中国药学杂志,1996年,27卷,7期,300页
  • 5Hu S R,The Application Technologyof ANN,1993年,73页
  • 6Hsiao H C,J Pharm Sci,86卷,7期,840页

共引文献15

同被引文献125

引证文献10

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部