摘要
研究Fourier算子Sn的范数‖Sn‖=1π∫π-πsin2n+12t2sint2dt.已知‖Sn‖具有表达式‖Sn‖=4π2logn+An,其中An表示与n相关且对n一致有界的数列.至今最好的估计是Rivlin给出的:‖Sn‖≤4π2logn+3,通过进一步精细的估计证明了4π2logn+1<‖Sn‖<4π2logn+2,从而给出了关于一致有界量An的上下界的一个新估计.
The norm of the Fourier operator S-n,‖S-n‖=1π∫+π-{-π}sin 2n+12t2sint2dt was studied.It is well known that ‖S-n‖=4π+2log n+A-n,where A-n is a uniformly bounded sequence.The best known evaluation was obtained by Rivlin:‖S-n‖≤4π+2log n+3.Through a precise evaluation,it was shown that {4π+2log n+1<‖S-n‖<4π+2log n+2.}
出处
《浙江师范大学学报(自然科学版)》
CAS
2004年第3期221-224,共4页
Journal of Zhejiang Normal University:Natural Sciences
基金
浙江省自然科学基金(100042)