1SA J S, KANG T W, KIM C M. Experimental study of the characteristics of idle vibrations that result from axial forces and the spider positions of constant velocity joints[J]. International Journal of Automotive Technology, 2010, 11(3): 355-361.
2CAI Q C, LEE K H, SONG W L, et al. Simplified dynamics model for axial force in tripod constant velocity joint[J]. International Journal of Automotive Technology, 2012, 13(5).- 751-757.
3LIM Y H, LEE W H. Multibody dynamics analysis of the driveshaft coupling of the ball and tripod types of constant velocity joints[J]. Multibody Syst. Dyn., 2009, 22- 145-162.
4MARIOT J P, KNEVEZ J Y, BARBEDETTE B. Tripod and ball joint automotive transmission kinetostatic model including friction[J]. Multi-body System Dynamics, 2004, 11: 127-145.
5URB1NATI F, PENNESTRI E. Kinematic and dynamic analyses of the tripod joint[J]. Multibody System Dynamics, 1998, 2: 355-361.
6HUNT K H. Constant-velocity shaft-coupl!ng: A general theory[J]. ASME Journal of Engineering for Industry, 1973, 95: 455-464.
7WATANABE K. Analyses of kinematic characteristics of tripod constant velocity joint[J]. JSME, 2000, 66(650): 3433-3440.
8WATANABE K, KAWAKASTU T, NAKAO S. Kinematic and static analyses of tripod constant velocity joints of the spherical end spider type[J]. ASME Journal of MechanicalDesign, 2005, 127(6).- 1137-1144.
9WANG Xuefeng, CHANG Degong. Kinematic and dynamic analyses of tripod sliding universal joints[J]. Journal of Mechanical Design, Transactions of the ASME, 2009, 131(6): 061011.