期刊文献+

抛物量子点中弱耦合束缚极化子的声子平均数

The Average Number of Virtual Phonons of the Strong-coupling Bound Polaron in a Parabolic Quantum Dot
下载PDF
导出
摘要 采用线性组合算符和幺正变换方法研究了抛物量子点中弱耦合束缚极化子的声子平均数,计算结果表明:抛物量子点中束缚极化子的声子平均数随库仑束缚场和电子-体纵光学声子强度的增加而增加,随有效受限长度的增加而减小. In this paper,with linear combination operator and unitary transformation methods,the properties of the average number of virtual phonons of the strong-coupling bound polaron in a parabolic quantum dot.The results show that the average number of virtual phonons of the strong-coupling bound polaron decreases with the effective confinement length.Meanwhile,it increases with the Coulomb potential and the electron-LO-phonon coupling strength enhancing.
作者 陈钢 肖景林
出处 《内蒙古民族大学学报(自然科学版)》 2004年第5期491-494,共4页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 内蒙古高校重大科研项目资助课题(NJ02074)
关键词 束缚极化子 声子 弱耦合 量子点 线性组合算符 幺正变换 库仑 平均数 光学 计算结果 Parabolic quantum dot Bound polaron Average number of virtual phonons
  • 相关文献

参考文献17

  • 1[1]M A Reed,R T Bate,K Bradshaw,et al.Spatial quantizetion in GaAs multiple dots[J].Vac Sci Technol B,1986,4:358.
  • 2[2]J Cibert,P M Pertoff,J G Dolan,et al.Kinetics of implantation enhanced interdiffusion of Ga and Al at GaAs-GaAl1-xAs interfaces[J].Appl Phys Lett,1986,49:1275.
  • 3[3]M A Reed,J N Randall,R G Aggqrwal,et al.Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure[J].Phys Rev Lett,1988,60:535.
  • 4[4]C Sikorski,U Merkt.Spetroscopy of electronic states in InSb quantum dots[J].Phys Rev Lett,1989,62:2164.
  • 5[5]A Lorke,J P Kotthaus,K Ploog.Coupling oe quantum dots on GaAs[J].Phys Rev Lett,1990,64:2559.
  • 6王立国,肖景林.抛物量子点中弱耦合磁极化子的性质[J].发光学报,2003,24(6):562-566. 被引量:13
  • 7肖景林,王立国.量子点中强耦合极化子的性质[J].光电子.激光,2003,14(8):886-888. 被引量:18
  • 8[8]B S Kandemir,T Atanhan.Polaton effects on an anisotropic quantum dot in a magnetic field[J].Phys Rev B,1999,60:4834.
  • 9[9]K D Zhu,S W Gu.Polaronic states in a harmonic quantum dot[J].Phys Lett A,1992,163:435.
  • 10[10]K D Zhu,S W Gu.The Polaron self-energy in a parabolic quantum dot[J].Commun Theor Phys,1992,19:27.

二级参考文献23

  • 1[1]Naoki Tokuda,Hisashi Shoji,Kazuyuki Yoneyu.The optical polaron bound in a coulomb potential and its phase diagram[J].J Phys c:Solid state phys,1981,14:4281-4290.
  • 2[2]Chen Qinghu,Ren Yuhang,Jiao Zhengkuan,et al.Ground state description of bound polaron in parabolic quantum wires[J].Eur Phys J B (France),1999,11(1):59-63.
  • 3[3]M Bouhassoune,R Charrowr,M Fliyou,et al.Binding energy of a bound polaron is a quantum well wire[J].Acta Phys Pol A(Poland),2000,98(1-2):111-122.
  • 4[4]N Es-sbai,M Fliyou,E Abarkan.Impurity bound polaron in a cubic quantum dot[J].Phys Low-Dimens struct(Russia),2000,11-21:61-68.
  • 5[5]D V Melnikov,W B Fowler.Bound polaron in a spherical quantum dot:strong electron-phonon coupling case[J].Phys Rev,2001,B63:165302-1-8.
  • 6[6]J T Devreese,V M Fomin,E P Pokatilov,et al.Theory of bound polarons in oxide compounds[J].Phys Rev,2001,B63:184304-1-6.
  • 7[7]H Satori,M Hiyou,M Zerfuoui,et al.Electric field effect on the bound polaron in spherical quantum dots[J].Phys Low-Dimens struct(Russia),2001,7-8:55-65.
  • 8[8]W J Huybrechts.Internal excited state of the optical polaron[J].J Phys c:Solid state phys,1977,10:3761-3768.
  • 9J S Pan,H B Pan. Size-quantum effect of the energy of a change carrier in a semiconductor crystallite[J]. Phys.Solidi. B148: 129.
  • 10J C Marini, B Strebe, E Kartheuser. Exiton-Phonon interaction in CdSe and CuCl polar semiconductor nanosphere[J]. Phys. Rev. , B. B50: 14302.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部