期刊文献+

梁振动方程的多辛Preissman格式 被引量:1

Multi-Symplectic Preissman Scheme for Solving Vibration Equation of Beams
下载PDF
导出
摘要 考虑梁振动方程的一个多辛形式 ,并利用中点公式得到一个等价于多辛Preissman积分的新格式 ,用Fourier分析法 ,证明该格式是无条件稳定的 .最后给出数值例子 .数值例子表明 ,文中所给的格式是有效的 。 For solving vibration equation of beams, a symplectic form is considered; and a new scheme equivalent to multi-symplectic Preissman integrator is obtained by using midpoint formula; and the scheme is proved to be unconditionally stable by using the method of Fourier analysis. The scheme is effective and theoretical analysis coincides with actual calculation, as shown by numerical examples which are given finally.
机构地区 华侨大学数学系
出处 《华侨大学学报(自然科学版)》 CAS 2004年第4期360-365,共6页 Journal of Huaqiao University(Natural Science)
基金 国务院侨务办公室科研基金资助项目 (0 2QZR0 7)
关键词 粱振动方程 多辛 守恒律 稳定性 收敛性 vibration equation of beams, multi-symplectic, law of conservation, stability, convergence
  • 相关文献

参考文献6

  • 1Feng Kang. Difference schemes for Hamiltonian formulism and symplectic geometry[J]. J. Comput. Math., 1986,4(3):279~289
  • 2Feng Kang, Qin Mengzhao. The symplectic methods for the computation of Hamiltonian equations[A]. In:Zhu Youlan, eds. Proc. of 1st Chinese Cong. On Numerical Methods of PDE's, March 1986, Shanghai, Lecture Notes in Math.[C]. Berlin: Springer, 1987. 1~37
  • 3Feng Kang. On difference schemes and symplectic geometry[A]. In: Feng Kang, eds. Proceeding of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, Computation of Partial Differential Equations[C]. Beijing: Science Press, 1985. 42~58
  • 4Bridges T J, Reich S. Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity[J]. Physics Letter A,2001,284(4-5):184~193
  • 5Bridges T J. Multi-symplectic structures and wave propagation[J]. Math. Proc. Cam. Phil. Soc., 1997,121:147~190
  • 6矢(山鸟)信男,野木達夫.发展方程的数值分析[M].王宝兴等译.北京:人民教育出版社,1983. 36~106

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部