摘要
本文讨论二阶拟线性微分方程组边值问题( p(x'))'+a(t),(t,x,y)=0,( q(y'))'+b(t)g(t,x,y)=0,x(0)-B0(x'(0))=x(1)+Bo(x'(1))=0,y(0)-B1(y'(0))=y(1)+B1(y'(1))=0,其中f,g是非负连续的函数.利用五个泛函的不动点定理,赋予f和g一些增长条件保证至少三个对称正解的存在性.
In this paper, we study the second order quasilinear differential equation system of boundary value problem ( pp(x'))' + a(t)f(t,x,y) = 0, ( pq(y'))' + b(t)g(t,x,y) = 0, x(0) - B0(x'(0)) = x(1) + B0(x'(1)) = 0, y(0) - B1(y'(0)) = y(1) + B1(y'(1)) = 0, where f, g are continuous and nonnegative functions. Using the five functionals fixed point theorem, growth conditions are imposed on f and g which ensure the existence of at least three positive symmetric solutions.
出处
《系统科学与数学》
CSCD
北大核心
2004年第4期513-519,共7页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10371030)山西省教委高科技开发研究基金(200138)河北科技大学校立基金(QD200313)资助课题.
关键词
拟线性
微分方程组
二阶
边值问题
正解的存在性
对称
泛函
保证
连续
Quasilinear differential equation system, positive solution, the five functionals fixed point theorem, nonlinear boundary condition.