期刊文献+

二阶拟线性微分方程组边值问题的三个对称正解 被引量:4

THREE SYMMETRIC POSITIVE SOLUTIONS FOR SECOND ORDER QUASILINEAR DIFFERENTIAL EQUATION SYSTEMS OF BOUNDARY VALUE PROBLEMS
原文传递
导出
摘要 本文讨论二阶拟线性微分方程组边值问题( p(x'))'+a(t),(t,x,y)=0,( q(y'))'+b(t)g(t,x,y)=0,x(0)-B0(x'(0))=x(1)+Bo(x'(1))=0,y(0)-B1(y'(0))=y(1)+B1(y'(1))=0,其中f,g是非负连续的函数.利用五个泛函的不动点定理,赋予f和g一些增长条件保证至少三个对称正解的存在性. In this paper, we study the second order quasilinear differential equation system of boundary value problem ( pp(x'))' + a(t)f(t,x,y) = 0, ( pq(y'))' + b(t)g(t,x,y) = 0, x(0) - B0(x'(0)) = x(1) + B0(x'(1)) = 0, y(0) - B1(y'(0)) = y(1) + B1(y'(1)) = 0, where f, g are continuous and nonnegative functions. Using the five functionals fixed point theorem, growth conditions are imposed on f and g which ensure the existence of at least three positive symmetric solutions.
出处 《系统科学与数学》 CSCD 北大核心 2004年第4期513-519,共7页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10371030)山西省教委高科技开发研究基金(200138)河北科技大学校立基金(QD200313)资助课题.
关键词 拟线性 微分方程组 二阶 边值问题 正解的存在性 对称 泛函 保证 连续 Quasilinear differential equation system, positive solution, the five functionals fixed point theorem, nonlinear boundary condition.
  • 相关文献

参考文献7

  • 1Fink A M, Gatica J A. Positive solutions of second order systems of boundary value problems. J.Math. Anal. Appl., 1993, 180: 93-108.
  • 2Ma Ruyun. Existence positive radial solutions for elliptic systems. J. Math. Anal. Appl., 1996,201: 375-386.
  • 3Ma Ruyun. Multiple nonnegative solutions of second order systems of boundary value problems.Nonlinear Analysis, 2000, 42: 1003-1010.
  • 4Avery R I and Henderson J. Three symmetric positive solutions for a second order boundary value problem. Appl. Math. Lett., 2000, 13: 1-7.
  • 5Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer.Math. Soc., 1997, 125: 2275-2283.
  • 6Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian. Proc. Amer.Math. Soc., 1997, 125: 2275-2283.
  • 7Guo D and Lakshmikantham V. Nonlinear Problems in Abstract Cones. San Diego: Academic Press, 1988.

同被引文献25

  • 1倪小虹,葛渭高.高耦合边值问题正解的存在性[J].应用数学学报,2005,28(2):210-215. 被引量:5
  • 2陈业华,黄元美.动力系统中一类二阶非线性微分方程解的存在性[J].数学杂志,1996,16(2):213-216. 被引量:2
  • 3李淑红,孙永平,方雅敏.一类二阶三点方程组正解的存在性[J].浙江师范大学学报(自然科学版),2005,28(4):372-378. 被引量:2
  • 4田家财,范进军.二阶非线性常微分方程组耦合系统的奇异边值问题正解的存在性[J].山东科学,2006,19(1):16-19. 被引量:3
  • 5[2]Zhan Bingbai, Zhang Jigui, Ge Weigao. Multiple positive solutions for some p-Laplacian boundary value problems. J Math Anal Appl,2004,300 : 477-490
  • 6[3]Zhang Bingbai, Ge Weigao, Wang Yifu. Multiplicity results for some second-order four-point boundary value problems. Nonlinear Analysis, 2005 ;60:491-500
  • 7[4]Wang Junyu. The existence of positive solutions for the one-dimensional p-Laplacian. Proc Amer Math Soc, 1997 ; 125 : 2275-2283
  • 8Dehong Ji,Hanying Feng,Weigao Ge.The existence of symmetric positive solutions for some nonlinear equation systems[J].Applied Mathematics and Computation,2008,197:51-59.
  • 9Guo Yanping and Ge Weigao.Positive solutions for three-point boundary value problems with dependence on the first order derivative[J].J Math Anal Appl,2004,290:291-301.
  • 10Yude Ji,Yanping Guo,Jiehua Zhang.Positive solutions for second-order quasilinear multi-point boundary value problems[J].Applied Mathematics and Computation,2007,189:725-731.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部