期刊文献+

基于距离测度的实数编码自适应遗传退火算法 被引量:5

Real-coded adaptive genetic annealing algorithm based on distance measurement
下载PDF
导出
摘要 提出一种基于距离测度的实数编码自适应遗传退火算法,根据个体的距离密集度自适应地确定其交叉概率和变异概率.空间距离密集度越高的个体,其交叉概率和变异概率也越高.算法引入模拟退火机制,在遗传进化过程中的每一代,对最优个体进行邻域局部寻优,利用模拟退火进一步改善算法的收敛性能.对带边界约束函数优化问题进行了仿真计算,结果表明该算法有效. A real-coded adaptive genetic annealing algorithm based on distance measurement is proposed in this paper and the probabilities of crossover and mutation are adaptively determined according to the distance density of chromosomes. Chromosomes with high space distance density have high crossover and mutation probabilities. Simulated annealing mechanism is introduced to do local-search for the best chromosome in every generation of the evolution process. This improves the convergence of the algorithm. This algorithm is used to solve function optimization problem with boundary constraints and computation results show that the algorithm is very effective.
作者 蔡良伟
出处 《深圳大学学报(理工版)》 EI CAS 2004年第4期291-294,共4页 Journal of Shenzhen University(Science and Engineering)
关键词 遗传算法 模拟退火算法 自适应 genetic algorithm simulated annealing algorithm adaptive
  • 相关文献

参考文献11

  • 1[3]刘勇,康立山,陈毓屏.非数值并行算法--遗传算法[M].北京:科学出版社,1998.
  • 2李守智,李敏远,潘永湘.遗传退火算法及收敛性分析(英文)[J].控制理论与应用,2002,19(3):376-380. 被引量:5
  • 3赵春晖,孙锐,孙圣和.基于整体退火遗传算法的柔性形态滤波器优化设计[J].电子学报,2002,30(1):54-57. 被引量:10
  • 4陈小平,于盛林.实数遗传算法交叉策略的改进[J].电子学报,2003,31(1):71-74. 被引量:52
  • 5[1]Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning[M]. USA: Addison Wesley Publishing Company, 1989.
  • 6[2]Zbigniew Michalewicz. Genetic Algorithms + Data Structures=Evolution Programs[M]. Berlin: Springer, 1996.
  • 7[3]ZHOU Ming, SUN Shu-dong. Theory and Application of Genetic Algorithm[M]. Beijing: National Defense Industry Publishing House, 1999.(in Chinese).
  • 8[4]LIU Yong, KANG Li-shan, CHEN Yu-ping. Non-numerical Parallel Algorithm-Genetic Algorithm[M]. Beijing: Science Publishing House, 1998. (in Chinese).
  • 9[5]van Laarhoven P J M, Aarts E H L. Simulated Annealing: Theory and Applications[M]. Holland: D Reidel Publishing Company, 1988.
  • 10[6]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983(220): 671-680.

二级参考文献10

  • 1赵春晖.数字形态滤波器理论及其算法研究,博士学位论文[M].哈尔滨工业大学研究生院,1998..
  • 2周明 孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999..
  • 3崔屹.图像处理与分析--数学形态学方法与应用[M].北京:科学出版社,2000.1-13.
  • 4Kang Lishan,Xie Yun,You Shiyong,etal.Nonnumerical-Prallel Algorithms(1)-Simulated Annealing Algoithms[M].Bejing:SciencePress,1994,4
  • 5Holland JH.Genetic algorithms[J].ScientificAmerican,1992,266(4):44-50
  • 6Rudolph J.Convergence analysis of canonical genetic algorithms [J].IEEE Trans.onNeural Networks,1994,5(1):96-101
  • 7Goldberg D E.A note on Boltzmann tourlament selectionfor genetic algorithmsandpopulation-oriented simulated annealing[J].Complex Systems,1990,4(4):445-460
  • 8Shamir N,saad D andMaronE.Preserving the diversity of ageneti callyevolvingpopulation ofnets using the functional behavior of neuron[J].ComplexSystems,1993,7(7):551-558
  • 9张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E辑),1997,27(2):154-164. 被引量:78
  • 10侯格贤,吴成柯.遗传算法的性能分析[J].控制与决策,1999,14(3):257-260. 被引量:30

共引文献65

同被引文献38

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部