期刊文献+

基于本体的异构文本分类系统 被引量:4

An Ontology-based Heterogeneous Text Categorization System
下载PDF
导出
摘要 提出了一个基于本体的异构文本分类系统,使用结构本体很好地消除了文本文档的结构上的差异,并将领域本体引入到分类系统中,使得分类更加准确、高效,分类的规则更易理解。在使用COSA算法提取有效概念的同时,也大大地减少了关键术语的数量,节省了运算开销。 This paper brings out an ontology-based heterogeneous text categorization system, which exploits structure ontology to avoid the structure difference of text documents, and introduces domain ontology to this text categorization system. All the measures mentioned above make the system more accurate and more effective, the rules for categorization more understandable. When COSA algorithm is used to get meaningful concepts, the number of
出处 《计算机工程》 CAS CSCD 北大核心 2004年第21期123-125,共3页 Computer Engineering
关键词 本体 异构文本分类系统 知识工程 机器学习 规则 is reduced enormously. Key words Ontology Knowledge engineering Machine learning Text categorization Rule
  • 相关文献

参考文献6

  • 1[1]Sebastiani F. Machine Learning in Automated Text Categorization. ACM Computing Surveys, 2002,34(1): 1-47
  • 2[2]Hotho A, Maedche A, Staab S, et al. On Knowledgeable Unsupervised Text Mining. In: Proceedings of the DaimlerChrysler Workshop on Text Mining. Ulm, 2002-04-26/27
  • 3[3]Davulcu H, Yang Guizhen, Kifer m, et al. Computational Aspects of Resilient Data Extraction from Semistructured Sources. PODS 2000,2000:136-144
  • 4[4]Neumann G, Backofen R, Baur J, et al. An Information Extraction Core System for Real World German Text Processing. In: Proceedings of ANLP-97, Washington, USA, 1997:208-215
  • 5[5]Hotho A, Madche A, Staab S. Text Clustering Based on Good Aggregations. Kunstliche Intelligenz, 2002,(2)
  • 6[6]Cohen W W. Fast Effective Rule Induction. In: Machine Learning:Proceedings of the Twelfth International Conference, Lake Taho,California, Morgan Kaufmann, 1995

同被引文献24

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部