期刊文献+

转染弓形虫致密颗粒蛋白-1编码基因的小鼠巨噬细胞生物学特性 被引量:2

Biological Features of Mouse Macrophage Transfected with Toxoplasma gondii GRA-1 Gene
下载PDF
导出
摘要 目的 探讨转染弓形虫致密颗粒蛋白 1编码基因 (P2 4)前后巨噬细胞生物学性状的改变。 方法 将构建的重组质粒用脂质体介导 ,转染到小鼠巨噬细胞RAW 2 64 .7,抗生素G418筛选出阳性克隆 ,逆转录 聚合酶链反应方法鉴定并比较不同细胞株P2 4的表达。光学显微镜观察形态学改变并绘制生长曲线。 结果 Cyto P2 4 RAW 2 64 .7、Nuc P2 4 RAW 2 64 .7及Mito P2 4 RAW 2 64 .7三株细胞的P2 4mRNA表达水平无显著差异 ,ER P2 4 RAW 2 64 .7明显高于前三者。而转染空载体的 4株细胞未见P2 4 mRNA的表达。ER P2 4 RAW2 64 .7较未转染的细胞贴壁速度快、生长能力强。 结论 P2 Objective To investigate the change of biological features of macrophages after transfected by Toxoplasma gondii GRA 1 genes (P24). Methods The transfected cells Cyto P24 RAW264.7, Nuc P24 RAW264.7, Mito P24 RAW264.7 and ER P24 RAW264.7 were studied by RT PCR to determine the P24 mRNA expression. Growth features of the cells were examined with microscopy and the cell growth curve was developed. Results In four cell lines, expression of ER P24 RAW 264.7 was found to be higher than the other three, and there was no P24 mRNA expression in either of the cells without P24 insert. The attachment and the proliferation of ER-P24-RAW264.7 were more rapid than normal RAW264.7. Conclusion Transfection of mouse macrophages ER RAW264.7 strain with T. gondii P24 gene leads to a prominent change of biological features in the studied cell line.
出处 《中国寄生虫学与寄生虫病杂志》 CAS CSCD 北大核心 2004年第5期283-286,共4页 Chinese Journal of Parasitology and Parasitic Diseases
基金 国家教育部重点项目 (No .0 2 0 74) 福建省教育厅重点项目(No.JA0 2 2 1 6) 福建省科技三项费用(No.2 0 0 1 0 72 )~~
关键词 转染 巨噬细胞 RAW264.7 弓形虫 编码基因 小鼠 蛋白 生长 生物学特性 生物学性状 Toxoplasma gondii Macrophage Toxoplasma gondii GRA-1 genes Transfection Biological feature
  • 相关文献

参考文献10

  • 1[1]Sibley LD, Niesman IR, Parmley SF, et al. Regulated secretion of multi-lamellar vesicles leads to formation of a tubulo-vesicular network in host-cell vacuoles occupied by Toxoplasma gondii [ J ]. J Cell Sci, 1995,108: 1669-1677.
  • 2[2]Sibley LD, Boothroyd JC. Construction of a molecular karyotype for Toxoplasma gondii[J]. Mol Biochem Parasitol, 1992, 51: 291-300.
  • 3[3]Lecordier L, Fourmaux MP, Mercier C, et al. Enzyme-linked immunosorbent assays using the recombinant dense granule antigens GRA6 and GRA1 of Toxoplasma gondii for detection of immunoglobulin G antibodies[J]. Clin Diagn Lab Immunol, 2000, 7: 607-611.
  • 4[4]Cesbron-Delauw MF, Guy B, Torpier G, et al. Molecular characterization of a 23-kilodalton major antigen secreted by Toxoplasma gondii [ J ].Proc Natl Acad Sci USA, 1989, 86: 7537-7541.
  • 5彭碧文,郑大利,黄清玲,陈慧菁,林建银,蒋明森.弓形虫P24基因细胞内定位载体重组质粒的构建[J].中国寄生虫病防治杂志,2003,16(3):140-143. 被引量:2
  • 6[6]Tanaka T, Xuan X, Kato M, et al. Expression of recombinant Toxoplasma gondii P24 [J]. J Vet Med Sci, 1999, 61: 1235-1239.
  • 7[7]Mercier C, Lecordier L, Darcy F, et al. Molecular characterization of a dense granule antigen ( Gra 2 ) associated with the network of the parasitophorous vacuole in Toxoplasma gondii [ J]. Mol Biochem Parasitol, 1993,58: 71-82.
  • 8[8]Mevelec MN, Chardes T, Mercereau-Puijalon O, et al. Molecular cloning of GRA4, a Toxoplasma gondii dense granule protein, recognized by mucosal IgA antibodies [J]. Mol Biochem Parasitol, 1992, 56: 227-238.
  • 9[9]Persic L, Righi M, Roberts A, et al. Targeting vectors for intracellular immunization[J]. Gene. 1997, 187, 1-8.
  • 10[10]Persic L, Roberts A, Wilton J, et al. An integrated vector system for the eukaryotic expression of antibodies or their fragments after selection from phage display libraries [J]. Gene, 1997, 187: 9-18.

二级参考文献19

  • 1Kim K, Bulow R, Kampmeier J, et al. Conformationally appropriate expression of the Toxoplasma gondii SAG1 (P30) in CHO cells[J]. Infect Immun, 1994,62 : 203- 209.
  • 2Molen I, Beuchamp P, Cesbron MF, et al, Cloning of the gene encoding the P30 antigen of Toxoplasma gondii by PCR to insert it in transgenic mice[J]. Arch Med Res, 1994,25 : 463 -- 466.
  • 3Velge-Roussel F, Chardes T, Mevelec P, et al. Epitopic analysis of the Toxoplasma gondii major surface antigen SAG1 [J]. Mol Biochem Parasitol, 1994,66 ( 1 ) : 31 -- 38.
  • 4Bonhomme A, Thirion C, Boulanger F, et al. Toxoplasma gondiistructure variations of the antigen P30[J]. Parasitology, 1994,108(3) :281--287.
  • 5Lekutis C, Ferguson DJ, Boothroyd JC. Toxoplasma gondii: identification of a developmentally regulated family of genes related to SAG2[J]. Exp Parasitol, 2000,96(2) :89--96.
  • 6Mishima M, Xuan X, Shioda A, et al. Modified protection against Toxoplasma gondii lethal infection and brain cyst formation by vaccination with SAG2 and SRSI[J]. J Vet Med Sci,2001,63(4) :433--438.
  • 7Lyons RE, Lyons K, Mclend R, et al. Construction and validation of a polycompetitor construct (SWITCH) for use in competitive RT-PCR to assess tachyzoite-bradyzoite interconversion in Toxoplasma gondff[J]. Parasitology, 2001,123 (5) : 433-- 439.
  • 8He XL, Grigg ME, Boothroyd JC, et al. Struction of the immunodominant surface antigen from the Toxoplasma gondil SRS superfamily[J]. Nat Struct Biol, 2002,9 (8) : 606 -- 611.
  • 9E Mercier C, Lecoedier L, Darcy F, et al. Molecular characterization of a dense granule antigen (Gra2) associated with the network of the parasitophorous vacuole in Toxoplasma gondii [J]. Mol Biochem Parasitol, 19 93,58 ( 1 ) : 71 -- 82.
  • 10Duquesne V, Auriault C, Gras-Masse H, et al. Identification of T cell epitopes within a 23-kD antigen (P24) of Toxoplasma gondii[J]. Clin Exp Immunol, 1991,84(3) :527-- 534.

共引文献1

同被引文献42

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部