期刊文献+

Prediction of Injection-Production Ratio with BP Neural Network

基于BP神经网络的注采比预测(英文)
下载PDF
导出
摘要 Injection of water to enhance oil production is commonplace, and improvements in understanding the process are economically important. This study examines predictive models of the injection-to-production ratio. Firstly, the error between the fitting and actual injection-production ratio is calculated with such methods as the injection-production ratio and water-oil ratio method, the material balance method, the multiple regression method, the gray theory GM (1,1) model and the back-propogation (BP) neural network method by computer applications in this paper. The relative average errors calculated are respectively 1.67%, 1.08%, 19.2%, 1.38% and 0.88%. Secondly, the reasons for the errors from different prediction methods are analyzed theoretically, indicating that the prediction precision of the BP neural network method is high, and that it has a better self-adaptability, so that it can reflect the internal relationship between the injection-production ratio and the influencing factors. Therefore, the BP neural network method is suitable to the prediction of injection-production ratio. 采用编制的计算机程序计算了注采比与水油比法、多元回归法、物质平衡法、GM(1,1)模型和BP神经网络预测法的拟合注采比与实际注采比之间的误差大小,其平均相对误差分别为1.67%、1.08%、19.22%、1.38%和0.88%。对各种预测法产生误差的原因进行了理论分析,得出BP神经网络预测方法的精度最高,而且具有较好的自适应性,能够反映影响注采比的各种因素与注采比的内在关系。因此,BP神经网络方法可用于预测油田注采比。
出处 《Petroleum Science》 SCIE CAS CSCD 2004年第4期62-65,共4页 石油科学(英文版)
关键词 Injection-production ratio (IPR) BP neural network gray theory PREDICTION 注采比 物质平衡法 油田 水油比 预测方法 拟合 计算机程序 GM BP神经网络 理论分析
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部