期刊文献+

一类混沌系统的同步脉冲控制 被引量:4

Control of Pulse Synchronization for a Class of Chaotic Systems
下载PDF
导出
摘要 基于脉冲微分方程的稳定理论,针对一类混沌系统,提出了一种脉冲控制同步的方法·该方法仅采用驱动系统与响应系统状态变量的线性误差反馈作为脉冲控制信号,实现了两个混沌系统的全局渐近同步·给出了两个混沌系统实现全局渐近同步的判据·当采用相同的脉冲控制矩阵和相等的脉冲间隔时,两个混沌系统实现全局渐近同步的判据可以被简化·该方法适用于一大类混沌系统的同步控制·以Lorenz混沌系统为例,进行了控制器的设计·所设计的控制器结构简单,易于实现,收敛速度快·理论分析和数值仿真结果证明了该方法的有效性· Based on the stability theory of impulsive differential equation, a pulse synchronization control method for a class of chaotic systems is proposed. The global asymptotical synchronization of two chaotic systems is realized simply by using the linear error feedback from the state variables of drive and response systems as pulse control signal. Two criterions are thus given to guarantee the global asymptotical synchronization of the two chaotic systems, which could be simplified in case their pulse control matrices and pulse intervals are the same. The method is applicable to a large class of chaotic systems. A controller is therefore designed with Lorenz chaotic system as an example, which is simple and easy to implement with high convergence rate. The theoretic analysis and numerical simulation verified the effectiveness of the method.
作者 黄玮 张化光
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第11期1027-1029,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60274017 60325311) 教育部博士点基金资助项目(20011045023)
关键词 脉冲控制 同步 驱动系统 响应系统 LORENZ混沌系统 pulse control synchronization drive system response system Lorenz chaotic system
  • 相关文献

参考文献11

  • 1[1]Pecora L M, Carroll T L. Synchronization in chaotic system[J]. Phys Rev Lett, 1990,64(8):821-824.
  • 2[2]Yang X S, Duan C K, Liao X X. A note on mathematical aspects of drive-response type synchronization[J]. Chaos, Solitons & Fractals, 1999,10(9):1457-1462.
  • 3[3]Lü J H, Zhou T S, Zhang S C. Chaos synchronization between linearly coupled chaotic systems[J]. Chaos, Solitons & Fractals, 2002,14(4):529-541.
  • 4[4]Bai E W, Lonngren K E. Sequential synchronization of two Lorenz systems using active control[J]. Chaos, Solitons & Fractals, 2000,11(7):1041-1044.
  • 5[5]Yin X H, Ren Y, Shan X M. Synchronization of discrete spatiotemporal chaos by using variable structure control[J]. Chaos, Solitons & Fractals, 2002,4(7):1077-1082.
  • 6[6]Chen S H, Lü J H. Synchronization of an uncertain unified chaotic system via adaptive control[J]. Chaos, Solitons & Fractals, 2002,14(4):643-647.
  • 7[8]Yang T, Yang L B, Yang C M. Impulsive synchronization of Lorenz systems[J]. Physics Letters A, 1997,226(6):349-354.
  • 8[9]Sun J T, Zhang Y P, Wu Q D. Impulsive control for the stabilization and synchronization of Lorenz systems[J]. Physics Letters A, 2002,298(2-3):153-160.
  • 9[10]Chen S H, Yang Q, Wang C P. Impulsive control and synchronization of unified chaotic system[J]. Chaos, Solitons & Fractals, 2004,20(4):751-758.
  • 10[11]Wang Y W, Guan Z H, Xiao J W. Impulsive control for synchronization of a class of continuous systems[J]. Chaos, 2004,14(1):199-203.

同被引文献30

  • 1许弘雷,刘新芝.陈氏混沌系统的脉冲鲁棒镇定[J].华中科技大学学报(自然科学版),2004,32(10):105-107. 被引量:9
  • 2黄玮,姜丽.Rssler混沌系统的脉冲控制同步[J].石油化工高等学校学报,2004,17(4):75-77. 被引量:2
  • 3LV Jin-hu,CHEN Guan-rong. A New Chaotic Attractor Coined [J]. Int J Bifurcat Chaos,2002,12(3):659-666.
  • 4OTT E,GREBOGI C, YORKE JA. Controlling Chaos [J ]. Plays Rev Lett, 1990,64:1196-1199.
  • 5PECORA L,CARROLL T. Synchronization in Chaotic System [J ]. Phys Rev Lett, 1990,64:821-824.
  • 6WU Xiao-qun, LV Jun-an. Parameter Identification and Backstepping Gontrol of Uncertain Lti System [J]. Chaos,Solitons & Fractals, 2003,18:721-729.
  • 7WU Xaio-qun, LV Jun-an,TSE Chi K, et al. Impulsive Control and Synchronization of the Lorenz Systems Family [J ]. Chaos, Solitons & Fractals, 2007,31 : 631-638.
  • 8Pecora LM, Carroll TL. Synchronization in chaotic system [J]. Phys Rev Lett, 1990, 64 (8): 821-824.
  • 9Lü JH, Zhou TS, Zhang SC. Chaos synchronization between linearly coupled chaotic systems [J]. Chaos, Solitons & Fractals, 2002, 14:529-541.
  • 10Yin XH, Ren Y, Shan XM. Synchronization of discrete spatiotemporal chaos by using variable structure control [J]. Chaos, Solitons & Fractals, 2002,14:1077-1082.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部