期刊文献+

钢结构塑性分析的新模型 被引量:3

A NEW MODEL FOR PLASTIC ANALYSIS OF STEEL STRUCTURES
下载PDF
导出
摘要 介绍了一种适用于钢结构塑性分析的新的双曲面本构关系模型,可有效地考虑加载历史的影响,对于非比例加载有良好的适用性,可用于钢结构在复杂动力荷载作用下的塑性分析,在分析中不会引起数值计算中的困难。计算实例证明,该模型是精确和可靠的。 Based on Zieglers kinematic hardening model, a new hyperboloidal constitutive model which is suitable for the plastic analysis of steel structures is presented. The model is not only capable of considering the effect of loading history, but also applicable to unsymmetric plastic cycle of strain. Thus, it can be used to perform plastic analysis of steel structures under complex dynamic load. Using this model, the response of steel structures under severe earthquake action can be traced efficiently. Numerical examples demonstrate that the model has enough precision and reliability and it can be implemented easily in computer analysis.
作者 许红胜 熊辉
出处 《工程力学》 EI CSCD 北大核心 2004年第5期161-165,共5页 Engineering Mechanics
关键词 钢结构 塑性分析 本构关系模型 屈服面模型 非比例加载 steel structures plasticity analysis constitutive relation yield-surface model unsymmetric plastic cycle of strain
  • 相关文献

参考文献16

  • 1[1]Yang T Y, Saigal S. A simple element for static and dynamic response of beams with material and geometric nonlinearities[J]. Int. J. Num. Meth. Engng., 1984, 20: 851-867.
  • 2[3]Liu S C, Lin T H. Elastic-plastic dynamic analysis of structures using known elastic solution[J]. Int. J. Earthq Engng Stuct. Dyn, 1979, 7: 147-159.
  • 3[4]Liou G S, Kang Y Y. Nonlinear response of a building structure to earthquake excitation[J]. Comp. Struct, 1992, 45: 655-665.
  • 4[5]Noor A K, Peter J M. Nonlinear dynamic analysis of space truss[J]. Comput. Meth. Appl. Mech. Engng., 1980, 21: 131-151.
  • 5[6]Zhu K, Al-Bermani F. Nonlinear dynamic analysis of lattice structure[J]. Comp. Struct, 1994, 52(1): 9-15.
  • 6[7]H Moon. An experimental study of the outer yield surface for annealed polycrystalline aluminum[J]. Acta Mechanica, 1976, 24: 191-208.
  • 7[8]A Phillips, H Moon. The experimental investigation concerning yield surfaces and loading surfaces[J]. Acta Mechanica, 1977, 27: 91-102.
  • 8[9]Dalafalis Y F, Popov E P. Platic internal variables formalism of cyclic plasticity [J]. Journal of Applied Mechanics, ASME, 1976, 43: 645-651.
  • 9[10]Mroz Z. An attempt to describe the behavior of metals under cyclic loads using a more general workhardening model[J]. Acta Mechanica, 1969, 7: 199-212.
  • 10[11]Tseng N T, Lee G C. Simple plasticity model of two-surface type[J]. Journal of Engineering Mechanics, ASCE, 1983, 109: 795-810.

同被引文献44

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部