期刊文献+

路径抽样法在贝叶斯模型选择中的应用 被引量:2

Application of the Path Sampling to the Model Selection by Means of Bayesian Method
下载PDF
导出
摘要 为采用贝叶斯分析方法解决模型选择问题 ,针对传统的Box Cox模型线性与非线性的选择问题 ,将路径抽样法应用于贝叶斯因子的计算 ,引进一个连续的路径参数并且假定它满足一定的概率分布 ,利用该路径参数连接待选择的模型 ,使计算贝叶斯因子的工作主要集中于马尔可夫链蒙特卡洛 (MCMC)抽样上 ,从而简化了使用贝叶斯分析方法的计算过程 ,实现了路径抽样法在模型选择中的具体应用 . In order to solve the problem of model selection by means of Bayesian method and in view of the selection of the traditional linear Box-Cox model and the nonlinear Box-Cox model, the method of path sampling was adopted to calculate the Bayesian factors, A continuous path parameter with a certain assumed probability distribution was then introduced to connect different models to be selected. Thus, the main calculation of the Bayesian factors was focused on the sampling of Markov Chain Monte Carlo (MCMC) and the calculation in the analytical process by means of Bayesian method was simplified. It is concluded that the method of path sampling can be applied to model selection in practice.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第10期90-92,共3页 Journal of South China University of Technology(Natural Science Edition)
关键词 贝叶斯因子 模型选择 路径抽样 Box-Cox模型 Bayesian factor model selection path sampling Box-Cox model
  • 相关文献

参考文献6

  • 1[1]Kass R E,Raftery A E.Bayes factors [J].Amer Statist Assoc,1995,90:773-795.
  • 2[2]Newton M A,Raftery A E.Approximate bayesian inference by the weighted likelihood bootstrap [J].Journal of the Royal Statistical Society,1994,56:3-48.
  • 3[3]Gelfand A E,Dey D K.Bayesian model choice: Asymptotics and exact calculations [J].Journal of the Royal Statistical Society,1994,56:501-514.
  • 4[4]Lewis S,Raftery A E.Estimating Bayes' factors via posterior simulation with the Laplace-Metropolis estimator [J].Journal of the American Statistical Association,1997,92:648-655.
  • 5[5]Gelman A,Meng X L.Simulating normalizing constants: form importance sampling to bridge sampling to path sampling [J].Statist Sci,1998,13: 163-185.
  • 6[6]Song X Y,Lee S Y.A Bayesian model selection method with applications [J].Computational Statistics & Data Analysis,2002,40:539-557.

同被引文献24

  • 1苏兵.模型选择中的贝叶斯因子修正[J].临沂师范学院学报,2006,28(3):23-25. 被引量:2
  • 2Jeffreys H. Theory of Probability[M]. Oxford: Clarendon Press. 1961:432- 433.
  • 3Song X Y, Lee S Y. A bayesian model selection method with applications[J]. Computational Statistics & Data Analysis, 2002 (3) :539 - 557.
  • 4Gelfand A E, Dey D K. Bayesian model choice: asymptotics and exact calculations[J ]. Journal of the Royal Statistical Society, 1994(3) :501 - 514.
  • 5Leslie W Hepple. Bayesian Model Choice in Spatial Econometrics[M]. Advances in Econometrics, Emerald Group Publishing Limited, 2004 : 101 - 126.
  • 6Raftery A E. Bayesian model selection in social research[J]. Sociological Methodology, 1995(25) :111 - 163.
  • 7Hepple L. Bayesian techniques in spatial and network econometrics: com- putational methods and algorithms[J]. Environment and Planning A, 1995(4):615- 644.
  • 8LeSage J P. Bayesian estimation of spatial autoregressive models[ J ]. International Regional Science Review, 1997 (1 - 2). 113 - 129.
  • 9LeSage J P. Bayesian estimation of limited dependent variable spatial autoregressive models[J]. Geographical Analysis, 2000 (1):19-35.
  • 10Romer P M. Endogenous technological ehange[J ]. Journal of Political Economy, 1990(5):72-102.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部