期刊文献+

灰度图像质心快速算法 被引量:32

Computation of Center of Mass for Gray Level Image Based on Differential Moments Factor
下载PDF
导出
摘要 对矩因子xpyq 做差分变换为函数F1( ) ,将图像函数f(x ,y)做累进求和变换为函数F2 ( ) 用F1( )和F2 ( )相乘求取质心 由于 0阶和 1阶矩因子中的 p ,q不大于 1,经差分后的F1( )除右端点外 ,其值都为 1,乘 1的运算当然可以不做 ,从而消去了乘法运算 对任意大小和任意级别的灰度图像 ,乘除法运算次数仅为 3次 ,而加法运算次数也有降低 文中算法计算结果精确 。 Moments factors x py q are transformed to function F 1 ()by differential operation and image functions f(i,j) are transformed to function F 2() by accumulative summation As ' p ' and ' q ' in the zeroth and first order moment factors are not larger than 1, so its value is 1 after differential operation Multiplication by 1 can be omitted For images of any size and any gray levels, this algorithm needs totally 3 multiplications Computation result is accurate Compared with some known methods for gray level image, the new algorithm reduced computational complexity significantly
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第10期1360-1365,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金 (60 2 710 3 2 )资助
关键词 质心 快速算法 模式识别 计算复杂度 geometric moments center of mass fast algorithm pattern recognition computational complexity
  • 相关文献

参考文献14

  • 1Singer M H. A general approach to moment calculation for polygons and line segments[J]. Pattern Recognition, 1993, 26(7): 1019~1028
  • 2Hu M K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962, 8(1): 179~187
  • 3Zakaria M F, Vroomen L J, Zsombor-Murray P L A,et al. Fast algorithm for the computation of moment invariants[J]. Pattern Recognition, 1987, 20(6): 639~643
  • 4Dai M, Baylou P, Najim M. An efficient algorithm for computation of shape moments from run-length codes or chain codes[J]. Pattern Recognition, 1992, 25(10): 1119~1128
  • 5Li B C. A new computation of geometric moments[J]. Pattern Recognition, 1993, 26(1): 109~113
  • 6王冰,刘晓霞,耿国华,周明全.一种基于补偿法则的矩的快速算法[J].计算机研究与发展,2003,40(7):1042-1048. 被引量:4
  • 7Philips W. A new fast algorithm for moment computation[J]. Pattern Recognition, 1993, 26(11): 1619~1621
  • 8Li B C, Shen J. Fast computation of moment invariants[J]. Pattern Recognition, 1991, 24(8): 807~813
  • 9Yang Luren, Albregtsen Fritz. Fast and exact computation of Cartesian geometric moments using discrete Green's theorem[J]. Pattern Recognition, 1996, 29(7): 1061~1073
  • 10Fu C W, Yen J C, Chang S. Calculation of moment invariants via Hadamard transform[J]. Pattern Recognition, 1993, 26(2): 287~294

二级参考文献25

  • 1宋克欧,黄凤岗,朱铁一.二值图像目标质心快速下降迭代搜索算法[J].模式识别与人工智能,1994,7(2):143-149. 被引量:8
  • 2M H Singer. A general approach to moment calculation for polygons and line segments. Pattern Recognition, 1993, 26(7) :1019--1028.
  • 3X Y Jiang, H Bunke. Simple and fast computation of moments.Pattern Recognition, 1991, 24(8) : 801 --806.
  • 4M F Zakaria, L J Vroomen, P L A Zsombor et al. Fast algorithm for the computation of moment invariants. Pattern Recognition,1987, 20(6): 639-643.
  • 5M Dai, P Baylou, M Najim. An efficient algorithm for computation of shape moments from run-length codes or chain codes. Pattern Recognition, 1992, 25(10): 1119--1128.
  • 6B C Li. A new computation of geometric moments. Pattern Recognition, 1993, 26(1) : 109-113.
  • 7J H Sossa-Azuela, CYanez-Marquez, J L Diaz de Leon S.Computing geometric moments using morphological erosions.Pattern Recognition, 2001, 34(2) : 271 --276.
  • 8Chin-Hsiung Wu, Shi-Jinn Horng, Pei-Zong Lee. A new computation of shape moments via quadtree. Pattern Recognition,2001, 34(7): 1319--1330.
  • 9Belkasirn-Mohamed Kamel. Fast computation of 2-D image moments using biaxial transform. Pattern Recognition, 2001, 34(9) : 1867-- 1887.
  • 10R Mukundan, K R Ramakrishnan. Fast computation of legendre and zenic moments. Pattern Recognition, 1999, 32(9): 1433--1442.

共引文献28

同被引文献227

引证文献32

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部