摘要
对矩因子xpyq 做差分变换为函数F1( ) ,将图像函数f(x ,y)做累进求和变换为函数F2 ( ) 用F1( )和F2 ( )相乘求取质心 由于 0阶和 1阶矩因子中的 p ,q不大于 1,经差分后的F1( )除右端点外 ,其值都为 1,乘 1的运算当然可以不做 ,从而消去了乘法运算 对任意大小和任意级别的灰度图像 ,乘除法运算次数仅为 3次 ,而加法运算次数也有降低 文中算法计算结果精确 。
Moments factors x py q are transformed to function F 1 ()by differential operation and image functions f(i,j) are transformed to function F 2() by accumulative summation As ' p ' and ' q ' in the zeroth and first order moment factors are not larger than 1, so its value is 1 after differential operation Multiplication by 1 can be omitted For images of any size and any gray levels, this algorithm needs totally 3 multiplications Computation result is accurate Compared with some known methods for gray level image, the new algorithm reduced computational complexity significantly
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2004年第10期1360-1365,共6页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金 (60 2 710 3 2 )资助
关键词
矩
质心
快速算法
模式识别
计算复杂度
geometric moments
center of mass
fast algorithm
pattern recognition
computational complexity