期刊文献+

基于SVD和ICA的鲁棒水印算法 被引量:6

A Robust Watermarking Scheme Based on SVD and ICA
下载PDF
导出
摘要 提出了一种新的基于SVD(singularvaluedecomposition,奇异值分解)和ICA(independentcomponentanalysis,独立分量分析)的鲁棒水印算法。采用二值图像作为水印,并进行Arnold变换,提高了安全性。SVD用于水印的嵌入过程,ICA用于水印信号的提取。该算法的水印容量大大提高,同时还保证了鲁棒水印的不可感知性。借助于ICA,该算法在不需考虑水印图像所经历的攻击类型及攻击参数的情况下,能够正确提取水印信号。实验结果表明,该算法对于JPEG压缩、噪声等具有鲁棒性,尤其对于几何攻击如旋转、剪切、伸缩具有很好的鲁棒性。 A novel watermarking algorithm for the digital image is proposed. The Singular Value Decomposition (SVD) is employed during the embedding process of the watermarking. Instead of random sequences, some readable signature is used as watermark. By means of Independent Component Analysis (ICA), the watermark is successfully extracted. In the proposed algorithm the capacity of the embedded watermark is enhanced, and at the same time the transparency can be guaranteed. Our method can extract the watermark without taking attacks into consideration. Experiment results have demonstrated that the proposed approach is robust against the common signal processing, such as JPEG compression, additive noise. In particular, it is also robust against geometric attacks, such as rotation, cropping, scaling etc.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第A02期53-57,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
关键词 数字水印 奇异值分解(SVD) 独立分量分析(ICA) ARNOLD变换 混沌序列 digital watermarking SVD ICA Arnold transform chaotic sequence
  • 相关文献

参考文献2

二级参考文献45

  • 1[1]R Linsker. An application of the principle of maximum information preservation to linear systems[Z].Adv. Neural Inform. Process Systems, 1989,1.
  • 2[2]Jutten C,Herault J. Blind separation of sources,Part 1:An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing, 1991, 24:1-10.
  • 3[3]Common P. Independent component analysis,a new concept? [J]. Signal Processing, 1994,36:287-314.
  • 4[4]A J Bell,T J Sejnowski. An information-maximisation approach to blind separation and blind deconvo--lution[J]. Neural Computation, 1995,7:1129 1159.
  • 5[5]S,Amari. Natural gradient works eHciently in learning[J]. Neural Computation, 1998,10 (2):251 276.
  • 6[6]J F Cardoso,B H Laheld. Equivariant adaptive source separation[J]. IEEE Trans. Signal Process, 1996,44 (12):3017 3030.
  • 7[7]A Souloumiac. Blind source detection and separation using secondorder nonstationarity[A]. In Proc.ICASSP[C]. 1995:1912-1915.
  • 8[8]M K Tsatsanis,C Kweon. Source separation using second order statistics:Identifiability conditions and algorithms[A]. In Proc.32nd Asilomar Conf. Signals,Syst.,Comput.[C]. 1998:1574-1578.
  • 9[9]K Matsuoka,M Ohya,M Kawamoto. A neural net for blind separation of nonstationary signals[J]. Neural Networks, 1995,8(3):411-419.
  • 10[10]J T Ngo,N A Bhadkamkar. Adaptive blind separation of audio sources by a physically compact device using second-order statistics[A]. In Proc. ICA'99[C]. Aussois,France,Jan.11-15,1999:257-260.

共引文献37

同被引文献36

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部