摘要
周知的正定矩阵A和B的Hadamard乘积矩阵不等式 :(A B) -1 ≤A-1 B-1 被精细为(A B) -1 ≤diag((A-1 (α) -1 B(α) ) -1 ,(A(α′) B-1 (α′) -1 ) -1 ) ,≤diag(A-1 (α) B(α) -1 ,A(α′) -1 B-1 (α′) )≤A-1 B-1 ,这里A(α)是A的主子矩阵且α′是α的补序列 ;
The well-known matrix inequality (AB)^(-1)≤A^(-1)B^(-1) involving Hadamard product of positive definite matrices is refined to(AB)^(-1)≤diag((A^(-1)(α)^(-1)B(α))^(-1),(A(α′)B^(-1)(α′)^(-1))^(-1)),≤diag(A^(-1)(α)B(α)^(-1),A(α′)^(-1)B^(-1)(α′))≤A^(-1)B^(-1),where A(α) is the leading principal submatrix and α′ is the complementary sequence of α. The necessary and sufficient condition of these inequalities becomes equalities are presented.
出处
《数学杂志》
CSCD
北大核心
2004年第5期513-518,共6页
Journal of Mathematics
基金
福建省教育厅科研基金项目 (JB0 1 2 0 6)
关键词
正定矩阵
HADAMARD乘积
矩阵不等式
等式条件
主子矩阵
positive definite matrix
Hadamard product
matrix inequality
condition of equality
principal submatrix