期刊文献+

次椭圆算子的第一特征值问题 被引量:1

THE FIRST EIGENVALUE OF SUBELLIPTIC OPERATORS
下载PDF
导出
摘要 本文基于三维球面的Hopf纤维定义球面上的次椭圆算子 ,研究其第一非零问题 ,得到次椭圆算子的第一非零特征值λ1 =2 ,因此有最佳Poincar啨不等式 .∫S3 |u- u|2 dσ≤ 12 ∫S3 | Hu|2 dσ. In this paper, we consider the first eigenvalue of the subelliptic operator based on the Hopf fibration on the sphere of dimension 3. We obtain that λ_1=2 and hence have the best possible Poincaré inequality ∫_(S^(-3))|u-|~2dσ≤12∫_(S^3)|_Hu|~2dσ on the sphere S^3.
出处 《数学杂志》 CSCD 北大核心 2004年第5期570-572,共3页 Journal of Mathematics
关键词 次椭圆算子 Hopf纤维 特征值 POINCARÉ不等式 subelliptic operator Hopf fibration eigenvalue Poincaré inequality
  • 相关文献

参考文献7

  • 1F黎茨 B 塞克佛尔维-纳吉著 庄万等译.泛函分析讲义(第二卷)[M].北京:科学出版社,1983..
  • 2C Fefferman, D H Phong. Subelliptic eigenvalue problems[M]. Proceeding of the Conference on Harmonic Analysis, in honor of A. Zygmund, Wadsworth Math. Series, 1981, 590-606.?A
  • 3A Nagel,E M Stein & S Wainger. Balls and metrics defined by vector fields I: basic properties[J].Acta Math. , 1985,155:103-147.?A
  • 4D Jerison. The Poincaré inequality for vector fields satisfying H? rmander's condition, Duke Math.J, 1986,53:503-523.?A
  • 5C J Xu. Regularity for quasilinear second order subelliptic equations[J]. Comm. P. A. M. , 1992,45,77-96.?A
  • 6Luo Xuebo, Niu, Pengchang. The spectrum of the Kohn-Laplace Operator[J], Chinese J Comtemp.Math., 1999,20( 2 ):281-287.?A
  • 7E M Stein. Singular Integrals and Differentiability Properties of Functions[M]. Princeton University Press, Princeton, 1970.?A

同被引文献6

  • 1Fefferman C, Phong D H. Subelliptic eigenvalue problems [M]. Proceeding of the Conference on Harmonic Analysis, in honor of A. Zygmund, Wadsworth. Series, 1981,590-606.
  • 2Nagel A,Stein E M,Wainger S. Balls and metrics defined by vector fields I.. basic properties[J]. Acta Math. , 1985,155 :103-147.
  • 3Jerison D. The Poincare inequality for vector fields satisfying Hormander's condition[J]. Duke Math. , 1986,53:503-523.
  • 4Xu C J. Regularity for quasilinear second order subelliptic equations[J]. Comm. P. A. M., 1992,45:77-96.
  • 5Luo X B, Niu P C. The spectrum of the Kohn-Laplace Operator[J]. Chinese J. Comtemp. Math. , 1999, 20(2):281-287.
  • 6Stein E M. Singular Integrals and Differentiability Properties of Functions[M]. Prineeton.. Princeton University Press, 1970

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部