期刊文献+

Browder's Theorem and Weyl's Theorem

Browder定理和Weyl定理(英文)
下载PDF
导出
摘要 In this paper, by defining two new spectral sets, we give the necessary and sufficient conditions for Browder's theorem and Weyl's theorem for bounded linear operator T and f(T), where f∈H(σ(T)) and H(σ(T)) denotes the set of all analytic functions on an open neighborhood of σ(T). 本文通过定义两个新的谱集,给出了Browder定理和Weyl定理对算子T以及f(T)成立的充要条件,其中f∈H(σ(T)),H(σ(T))表示在谱集σ(T)的开邻域上解析的函数的全体。
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2004年第4期571-576,共6页 数学研究与评论(英文版)
关键词 Browder's theorem Weyl's theorem spectrum. Browder定理 Weyl定理
  • 相关文献

参考文献11

  • 1BERBERIAN S K. An extension of Weyl's theorem to a class of not necessarily normal operators [J]. Michigan Math. J., 1969, 16: 273-279.
  • 2BERBERIAN S K. The Weyl spectrum of an operator [J]. Indiana Univ. Math. J., 1970, 20:529-544.
  • 3COBURN L A. Weyl's theorem for nonnormal operators [J]. Michigan Math. J., 1966, 285-288.
  • 4DJORDJEVIC S V, DJORDJEVIC D S. Weyl's theorems:continuity of the spectrum and quasihyponormal operators [J]. Acta Sci. Math., (Szeged), 1998, 64: 259-269.
  • 5HARTE R E. Invertibility and Singularity for Bounded Linear Operators [M]. Dekker, New York, 1988. MR 89d: 47001.
  • 6HEUSER H. Funktionalanalysis [M]. 2nd. ed. Stuttgart, 1986.
  • 7ISTRATESCU V I. On Weyl's spectrum of an operator I [J]. Rev. Ronmaine Math. Pure Appl., 1972, 17: 1049-1059.
  • 8OBERAI K K. On the Weyl spectrum [J]. Illinois J. Math., 1974, 18: 208-212.
  • 9RAKOCEVIC V. Operators obeying a-Weyl's theorem [J]. Rev. Roumaine Math. Pures Appl., 1989, 34(10): 915-919.
  • 10TAYLOR A E. Theorems on ascent, descent,nullity and defect of linear operators [J]. Math.Ann., 1966, 163: 18-49.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部