Browder's Theorem and Weyl's Theorem
Browder定理和Weyl定理(英文)
摘要
In this paper, by defining two new spectral sets, we give the necessary and sufficient conditions for Browder's theorem and Weyl's theorem for bounded linear operator T and f(T), where f∈H(σ(T)) and H(σ(T)) denotes the set of all analytic functions on an open neighborhood of σ(T).
本文通过定义两个新的谱集,给出了Browder定理和Weyl定理对算子T以及f(T)成立的充要条件,其中f∈H(σ(T)),H(σ(T))表示在谱集σ(T)的开邻域上解析的函数的全体。
参考文献11
-
1BERBERIAN S K. An extension of Weyl's theorem to a class of not necessarily normal operators [J]. Michigan Math. J., 1969, 16: 273-279.
-
2BERBERIAN S K. The Weyl spectrum of an operator [J]. Indiana Univ. Math. J., 1970, 20:529-544.
-
3COBURN L A. Weyl's theorem for nonnormal operators [J]. Michigan Math. J., 1966, 285-288.
-
4DJORDJEVIC S V, DJORDJEVIC D S. Weyl's theorems:continuity of the spectrum and quasihyponormal operators [J]. Acta Sci. Math., (Szeged), 1998, 64: 259-269.
-
5HARTE R E. Invertibility and Singularity for Bounded Linear Operators [M]. Dekker, New York, 1988. MR 89d: 47001.
-
6HEUSER H. Funktionalanalysis [M]. 2nd. ed. Stuttgart, 1986.
-
7ISTRATESCU V I. On Weyl's spectrum of an operator I [J]. Rev. Ronmaine Math. Pure Appl., 1972, 17: 1049-1059.
-
8OBERAI K K. On the Weyl spectrum [J]. Illinois J. Math., 1974, 18: 208-212.
-
9RAKOCEVIC V. Operators obeying a-Weyl's theorem [J]. Rev. Roumaine Math. Pures Appl., 1989, 34(10): 915-919.
-
10TAYLOR A E. Theorems on ascent, descent,nullity and defect of linear operators [J]. Math.Ann., 1966, 163: 18-49.
-
1杨小飞,李生刚,温智涛.预拓扑空间的邻域系、开邻域基与基[J].纺织高校基础科学学报,2008,21(1):17-20. 被引量:9
-
2赵美香.[0,1]-F分离性[J].山东大学学报(理学版),2007,42(11):98-100.
-
3陈文略,陈鹏.关于闭集间距离的一点注记[J].黄冈师范学院学报,2005,25(3):7-8.
-
4左飞,申俊丽.关于代数拟*-n-仿正规算子的Weyl型定理(英文)[J].数学进展,2016,45(1):117-121.
-
5杨荣先.关于第(16)类压缩型映象的不动点定理的推广[J].内江师范学院学报,1987,2(S2):16-18.
-
6刘兆理.平面中有界开集的边界的一个招扑性质[J].山东大学学报(理学版),1994,34(3):299-304.
-
7陈发彬.关于双拓扑空间某些问题的探讨[J].武夷学院学报,1994,21(3):12-19.
-
8姚静荪.度量空间中的完全覆盖定理[J].大学数学,1992,13(4):10-12.
-
9武跃祥.一类特殊空间性质的探讨[J].山西财经大学学报,1999,21(S1):117-117.
-
10欧阳景春.关于算子解析核的一个注记[J].福建师范大学学报(自然科学版),2011,27(2):21-24.