摘要
设{Xni1≤i≤n,n≥1}为行间独立的B值r.v.阵列,g(z)是指数为1/p的正则变化函数,r>0,{ani 1≤t≤n,n≥1}为实数阵列,本文得到了使 成立的条件,推广并改进了Stout及Sung等的著名结论.
Let {Xni:1 ≤i≤n,n≥1} be an array of rowwise independent B-valued random variables, and let g(x) be a regular varying function with index 1/P(P>0) . Let {ani:1≤i≤n,n≥1} be an array of real numbers. Let r>0 . The sufficient conditions such that are obtained. The wellknown results by Stout and Sung etc. are extended.
基金
国家自然科学基金(10271087)资助项目
关键词
完全收敛
行间独立的B值r.v.阵列
正则变化函数
加权和
array of rowwise independent B-valued random variables
complete convergence
regular varying function
weighted sum.