期刊文献+

非线性时序的混沌特性分析与预测 被引量:4

Analysis and Prediction of Fund Index of Nonlinear Time Series
下载PDF
导出
摘要 非线性时间序列相空间重构过程中的参数选择问题以及有效的预测方法一直是该领域研究的热点和难点,基于虚假最近邻域概念,同时确定最佳的嵌入维数m与时间延迟τ,对实际非线性时间序列进行相空间重构,求解出时间序列最在Lyapunov指数LE,验证了其中混沌特性,其可预报尺度为[1/LE].并应用基于[1/LE]个输入神经元与Kenya提出的m∶2m∶m∶1这两种人工神经网络结构对非线性时间序列进行训练和预测,预测结果的平均误差分别为4%和2%左右,后一种神经网络结构能提供更好的预测结果. Determining the parameters in the reconstruction of phase space and effective predict method is key points in this field.Based on the conception of false nearest neighbor,which determines the best embedding dimension m and time delay τ simultaneously,the nonlinear time series is reconstructed.The max Lyapunov exponent LE validates the chaotic property in the time series.The predictable scale is [1/LE] days.And the two architectures of artificial neural net work,based on [1/LE] input neurons and m∶2m∶m∶l,are applied in the prediction of the time series.The average errors are 4% and 2% respectively.the latter can offers better result.
作者 邓兰松 沈菲
机构地区 天津大学理学院
出处 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2004年第11期1022-1025,共4页 Journal of Tianjin University:Science and Technology
关键词 非线性时间序列 混沌 虚假最近邻域 最大LYAPUNOV指数 人工神经网络 nonlinear time series chaos false nearest neighbor max Lyapunov exponent artificial neural network
  • 相关文献

参考文献8

  • 1Peters Edgar E.Chaos and Order in the Capital Markets[M].Beijing: Economic Science Press,1990.
  • 2Peters Edgar E.Fractal Market Analysis[M].Beijing:Economic Science Press,2000.
  • 3Kugiumtzis D,Lingarde O C,Christophersen N.Regularized local prediction of chaotic time series[J].Physica D,1998,112(3):344-360.
  • 4De Oliveira Kenya Andresia,Vannucci Alvaro,da Silva Elton Cesar.Using artificial neural network to forecast chaotic time series[J].Physica A,2000,284(9):393-404.
  • 5Lai Yingcheng, Lerner David.Effective scaling regime for computing the correlation dimension from chaotic time series[J].Physica D,1998,115(4):1-18.
  • 6Kennel M B,Brown R,Abarbanel H D J.Determing embedding dimension for phase space reconstruction using a geometrical construction[J].Phys Rev A,1992,45(3):3 403-3 411.〖ZK)〗
  • 7Jayawardena A W,Li W K,Xu P.Neighbourhood selection for local modelling and prediction of hydrological time series[J].Journal of Hydrology,2002,258(1):40-57.
  • 8McNames James. Local averaging optimization for chaotic time series prediction[J].Neurocomputing,2002,48(10):279-297.

同被引文献66

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部