摘要
联系数是赵克勤先生在其专著《集对分析及其初步应用》中所提出的一个重要的数学工具,属于系统论和方法论的范畴,旨在统一处理由于模糊、随机、中介和信息不完全所导致的不确定性度量。试图将VenzodeSabbata教授所采用的与Dirac代数同构的实时空中的多重向量代数应用于集对分析中的联系数,从而相应地推广了联系数的范畴。
The contact number is an important mathematical tool of systems theory and methods in the monograph Set Pair Analysis and Its Preliminary Applications written by Zhao Keqin for unitizedly processing the uncertainties due to the fuzzy, stochastic, intermediate and information uncomplete about something. The article applies the multivector algebra which is isomorphism with the real Dirac algebra in the real space-time adopted by Venzo de Sabbata to the contact number of set pair analysis, and consequently, the contact number is generalized correspondingly.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2004年第11期66-70,共5页
Journal of Chongqing University
关键词
实空间
多重向量
代数
集对分析
联系数
旋量
流形
real space-time
multivector
algebra
set pair analysis
contact number
spinor
manifold