期刊文献+

空气-水鼓泡流动的阻力与蒸发传热特性 被引量:1

Pressure Drop and Evaporative Heat Transfer Characteristicsof Air-water Bubbling Flow
下载PDF
导出
摘要 实验研究了一种新的适用于蒸发冷却过程的鼓泡装置的阻力与传热特性。实验中将换热盘管浸没于空气-水的鼓泡层中,空气-水两相流通过盘管的表面。这种换热方式可以极大的提高换热管与空气之间的换热系数,降低水泵功率的消耗,而且对气流速度的要求低于空冷式冷凝器。文中给出了空气穿过空气-水鼓泡层的压降以及盘管与冷却水之间换热的实验数据,该结果显示影响压降及换热系数的因素包括多孔板的几何尺寸,鼓泡层的高度,空塔速度及热流密度。换热盘管与冷却水之间的换热系数比管外降膜冷却的换热系数大2倍多。 A new kind of evaporative heat transfer experiment for the cooling process of condensers is conducted. The test coil is immersed in an air-water bubbling layer. The air-water two-phase flow passes through the heating tubes of the coil. Due to the motion of the air bubbles in the water, a thin water film forms on the surface of the heating tubes. As the air bubbles passing by the tubes the water is evaporated into the air. The tubes of coil reject heat to the water film, and the evaporation of the water film then rejects heat to the air bubble stream. This heat transfer mode significantly increases the heat transfer coefficient between tubes and air. The consumption of the power of a water pump can be decreased. Moreover, the airflow rate required is less than that of an air-cooled condenser.The pressure drop of air through air-water bubbling layer and the heat transfer between the tubes and water are experimentally investigated in the paper. The results show that the factors affecting the pressure drop and the heat transfer coefficient involve the pore geometry of sieve plate, the height of the air-water bubbling layer, the air flow rate through the sieve plate and the heat flux of tubes. The heat transfer coefficient between tube and water is two times larger than that of falling film of water on the outer surface of tube.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第11期88-91,共4页 Journal of Chongqing University
基金 国家自然科学基金资助项目(50276073)
关键词 空气-水鼓泡流动 冷却 流动阻力 蒸发传热 Air-water bubbling flow cooling pressure drop evaporative heat transfer
  • 相关文献

参考文献6

  • 1[1]ESMAEELI A, TRYGGVASON G. Direct numerical simulations of bubbly flows. Part I. Low Reynolds number arrays[J]. J Fluid Mech, 1998, 377:313-345.
  • 2[2]DUDUKOVIC M P, DEVANATHAN N. Bubble column reactors: some recent developments in chemical reactor technology for environmentally safe reactors[J]. NATO ASI Series E Appl Sci, 1993, 225:379-408.
  • 3[3]KUMAR S B, DEVANATHAN N, MOSLEMIAN D, et al. Effect of scale on liquid recirculation in bubble columns[J]. Chem Eng Sci, 1994, 49(24B):5 637-5 652.
  • 4[4]ADKINS D R, SHOLLENBERGER K A I, O'HERN T J, et al. Pressure effects on bubble column flow characteristics[A]. ANS Proceedings of the National Heat Transfer Conference[C]. American Nuclear Society, Lagrange Park, IL., 1996:318-325.
  • 5尾花英朗.热交换器设计手册[M].北京:石油工业出版社,1981..
  • 6[6]MIZUSHINA,MIYASHITA. A new design of gas-liquid contacting heat exchanger[J]. Journal of Chemical Engineering Japan, 1968, 32(10): 987-992.

共引文献2

同被引文献8

  • 1尾花英朗,徐中权.热交换器设计手册[M].北京:石油工业出版社,1982.
  • 2Delnoij E, Lammers F A, Kuipers J A M, et al. Dynamic Simulation of Dispersed Gas-Liquid Two-Phase Model[J]. Chemical Engineering Science, 1997, 52:1429 - 1458.
  • 3Majumdar D M, Farouk B, Shah Y T. Hydrodynamic Mod- eling of Three-Phase Flows Through a Vertical Column[J]. Chemical Engineering Science, 1997, 52:4485 - 4497.
  • 4Sokolinch A, Eigenberger G, Applicability of the Standard K-ε Turbulence Model to the Dynamic Simulation of Bubble Columns: Part I .Detailed Numerical Simulations[J].Chemical Engineering Science, 1999,54, 2273 - 2284.
  • 5Qinghua Chen, Amano R S, Zhou, Linli, et al. Evaporative Heat Transfer Experiment of Air-Water Bubbly Flow[C]. Proceedings of the 2003 AS/VIE Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2003, 1:712 - 721.
  • 6郭锦烈.两相与多相流体力学[M].西安:西安交通大学出版社.2002.
  • 7刘叶,卢冬华,陈军等.均匀内热源池式空间盘管换热器传热特性研究[R].空泡物理和自然循环实验室年报,2006,233-236.
  • 8欧阳洁,李静海.鼓泡流化床中动态行为的离散模拟[J].自然科学进展(国家重点实验室通讯),2000,10(2):154-160. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部