期刊文献+

基于项目序列集亚操作和数据分割的最大频繁项目序列挖掘方法(英文)

Discovering Maximal Frequent Itemsequences Based on Suboperators of Itemsequence Sets and Data Partitioning
下载PDF
导出
摘要 发现频繁项目序列集是关联规则挖掘中的一个重要步骤.该文提出两个发现最大频繁项目序列的算法Dfis和Dfisp.Dfis算法基于项目序列集操作理论,只有一次数据库扫描.Dfisp是Dfis的改进算法,它引入数据分割技术以提高内存使用率因而增强对大型数据库的处理能力,是一个两次数据库扫描算法.实验表明了它们的性能能和优势. Discovering frequent itemsets or itemsequences is an important phase in mining association rules. This paper presents two new algorithms for discovering frequent itemsequences called Dfis and Dfisp, which are based on suboperators of itemsequence sets and data partitioning techniques. Dfis is an algorithm with one-pass over databases and Dfisp is with two-pass over databases. Experimental results show that using suitable number of data partitioning, Dfisp could keep memory usage space within acceptable ranges.
出处 《自动化学报》 EI CSCD 北大核心 2004年第5期772-777,共6页 Acta Automatica Sinica
基金 Supported by National Natural Science Foundation of P.R.China(60173014) Natural Science Foundation of Bei-Jing(4022003) Educational Foundation of Beijing(KZ0703200356)
关键词 数据挖掘 关联规则 项目序列 亚操作 Algorithms Database systems Mathematical operators Set theory Theorem proving
  • 相关文献

参考文献10

  • 1Agrawal R, Imielinski T, Swami Arun N. Mining association rules between sets of items in large database. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Washington, DC: ACM Press,1993, 207~216
  • 2Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases. In:Proceedings of the 21st VLDB Conference, Zurich, Switzerland: Morgan Kaufman Publishers, 1995, 432~444
  • 3Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules. In: Proceedings of the ACM SIGMOD, San Jose, USA: ACM Press, 1995, 175-186
  • 4Toivonen H. Sampling large databases for mining association rules. In: Proceedings of the 22nd VLDB Conference,Bombay, India: Morgan Kaufmann Publishers, 1996, 134-145
  • 5Pasquier N, Bastide Y, Taouil R, Lakhal L. Efficient mining for association rules using closed itermset lattices. Information Systems, 1999, 24(1): 25 - 46
  • 6Han J W, Jian Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceedings of the SIGMOD Conference, Dallas, Texas, USA: ACM Press, 2000, 1-12
  • 7Hah J W, Pei J, Mortazavi A B, Chen Q, Dayal U, Hsu M. FreeSpan: Frequent pattern-projected sequential patterns mining. In: Proceedings of the KDD Conference, Boston, MA, USA: ACM Press, 2000, 355-359
  • 8Manmila H. Methods and problems in data mining. In: Proceedings of the 6th International Conference on Database Theory, Delphi, Greece: Springer-Verlag, 1997, 41-45
  • 9Doug B, Calimlim M, Gehrke J. MAFIA: A maximal frequent itemset algorithm for transactional databases. In:Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany: ICDE Society, 2001,443~462
  • 10Karam G, Zaki M J. Efficiently mining maximal frequent itemsets. In: Proceedings of the IEEE International Conference on Data Mining, San Jose: IEEE Computer Society, 2001, 163- 170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部