摘要
证明了:存在无穷多组正整数(a,b,c)满足a+b=c,gcd(a,b,c)=1,c>32G,其中G是乘积abc中不同素因数的乘积.
It is proved that there exists infinitely many positive integer triples (a,b,c) satisfying a+b=c, gcd(a,b,c)=1 and c>32G, where G is the product of distinct prime divisors of abc.
出处
《吉林化工学院学报》
CAS
2004年第4期97-98,共2页
Journal of Jilin Institute of Chemical Technology