期刊文献+

表达β-半乳糖苷酶的gal B16肿瘤模型的建立及其在肿瘤DNA疫苗研究中的应用 被引量:1

ESTABLISHMENT OF MOUSE MELANOMA MODEL EXPRESSING β-GALACTOSIDASE AND ITS APPLICATION IN THE RESEARCH OF DNA VACCINES AGAINST TUMOR
下载PDF
导出
摘要 本文工作的目的是建立以β-半乳糖苷酶为标志性抗原的小鼠黑色素瘤模型,并进行肿瘤免疫的研究。我们首先在pcDNA3质粒中引入一个β-半乳糖苷酶编码基因从而建立转染质粒p3gal。p3gal转染小鼠黑色素瘤细胞B16后,再通过G418筛选及X-Gal细胞染色得到表达β-半乳糖苷酶的galB16细胞株。接着用该细胞株成功地在C57小鼠上建立了表达β-半乳糖苷酶的galB16肿瘤模型。并在此模型上观察了β-半乳糖苷酶编码基因作为DNA疫苗抑制galB16肿瘤生长的作用。 We established a mouse melanoma model expressing β-galactosidase for the study of tumor immunotherapy.The recombinant vector p3gal was constructed by inserting a β-galactosi- dase gene into the MCS of plasmid pcDNA3.The vector then transfected the B16 cells.Through selection with 500μg/ml G418 and in situ X-Gal staining,the melanoma cell line galB16,stably expressing β-galactosidase was obtained.The melanoma model was successfully established after inoculation in mouse with galB16 cells.In situ X-Gal staining showed that the tumor ceils ex- pressed β-galactosidase in vivo.With the model,we designed animal experiments for mouse tumor immunotherapy.Twenty mice were randomly assigned to four parallel groups.They received i.m. injection with saline,DNA vaccine p3gal(100μg/mouse),adjuvant CpG 1826(20μg/mouse),or p3gal+CpG 1826 respectively.Our result suggested that the DNA vaccine containing β-galactosidase gene could protect mice against the galB16 tumor challenge.In addition,when combining with the adjuvant CpG 1826,the effect was increased prominently.
出处 《实验生物学报》 CSCD 北大核心 2004年第5期339-343,共5页 Acta Biologiae Experimentalis Sinica
关键词 Β-半乳糖苷酶 肿瘤模型 表达 编码基因 转染 肿瘤DNA 疫苗研究 C57小鼠 PCDNA3 细胞 β-galactosidase B16 Tumor immunotherapy DNA vaccine CpG
  • 相关文献

参考文献9

  • 1Bo, D. 2002, Introduction: current concepts in immunity to human cancer and therapeatic antitumor vaccines. Immunological Reciecs, 188:5-8.
  • 2You, K., G. Ruth, G. Natalio, S. Torsten, A. Bernd & J. H. Gunter, 2001, NK and CD8^+ T cell-mediated cradication of established tumors by peritnmoral injection of CpG-containing oligodeoxynueleotides. J Immunol. 167:5247-5253.
  • 3Miriam, M., S. Tomoharu, G.E. Edgar & F. Lawrence, 2002. In vivo manipulation of dendritie cells to induce therapentic immunity. Blood, 99:1676-1682.
  • 4Indresh, K.S. & A.L. Margaret. 2003. Gene vaccines. Ann. Intern. Med, 138:550-559.
  • 5Federico, D.M., H. Sophie, M.B. Jean, G. Fabienne, M. Pasqualina F. Silvio, L.M. Maria & V. Aldo. 2003. DNA vaccines against HPV-16 E7-expressing tumor cells. Anticomeer Research, 23:1449-1454.
  • 6Hiroaki, H., T. Osamu. K. Taro, K. Tsuneyasn, S. Shintaro, S. Hideki, M. Makoto, H. Katsnaki, W. Hermann, T. Kiyoshi & A. Shizuo, 2000. A Toll-like receptor recognizes bacterial DNA. Nature. 400:740-745.
  • 7Alexander, D., Z. Stefan & H. Klaus, 2002, CpG DNA in the prevention and treatment of infections. Biodrugs,16(6): 419-431.
  • 8Ramunas M.V,, P. Hanspeter, B,L, Grayson, H. Hans & W, Hermann, 2000, CpG-DNA activates in vico T cell epitope presenting dendritic cells to trigger protective antiviral eytotoxic T cell responses. J. Immunol., 164:2372-2378.
  • 9Shin, S., T, Fumihiko, Q,X, Ke, I, Norihisa & O, Kenji, 2003, Adjuvant formulations and delivery systems for DNA vaccines. Methods, 31: 243-254,.

同被引文献13

引证文献1

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部