期刊文献+

基于空间特征的SAR图像分割方法研究 被引量:1

Research on Spatial Matrix Based Method for SAR Image Segmenta tion
下载PDF
导出
摘要 空间矩阵描述了不同区域间的相邻概率。SAR图像具有不同地域呈现不同纹理的特征,并且区域间有较大的对比度,因此SAR图像的空间矩阵具有同类区域间相邻概率最大,异类区域间相邻概率较小的特点。利用这一特点,该文提出了一种基于空间矩阵的图像分割的方法。该方法将空间矩阵作为适应度,用遗传算法可以使分割阈值收敛到最优,并在阈值搜索的过程中用孤立点检测的方法消除相干斑噪声的影响。仿真结果表明,这是一种有效的SAR图像区域分割方法。 Spatial matrix describes the probabilities that one area is the neighbor of other areas.Different areas in SAR images have different textural features and have big contrast.Therefore the spatial matrix of a SAR image has the character that the probability of the areas of same kind is the largest and the probability of the areas of different kinds is the smallest.By using this character,this paper proposes an image segmentation method based on spatial matrix.The method proposed utilizes Genetic Algorithms to search optimal threshold where spatial matrix is used as fitness.Moreover in the method,the outlier detection is used to eliminate the effect of correlative noises.Simulation results show that this method is effective for SAR image segmentation.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第33期70-72,共3页 Computer Engineering and Applications
基金 国家863高技术研究发展计划(SAR图像)(编号:2002AA135080)
关键词 合成孔径雷达(SAR)图像分割 空间矩阵 遗传算法 孤立点检测 Synthetic Aperture Radar(SAR),image segmentation,spatial matrix,genetic algorithms ,outlier detection
  • 相关文献

参考文献3

  • 1Jiawei Han,Micheline Kamber. Data Mining Concept and Techniques[M].Copyright 2001 by Morgan Kaufmann Publishers,Inc
  • 2Leen-Kiat Soh,Costas tsatsoulis.Segmentation of SateLlite Imagery of Natural Scenes Using Data Mining[J].IEEE Transactions on Geoscience and Remote Sensing,1999;37(2)
  • 3Sahoo P K.A survey of Threshold techniques[J].Computer Vision Graphics Image Process,1988;41:233~260

同被引文献21

  • 1曹兰英,夏良正.SAR图像人造目标检测研究[J].电子与信息学报,2005,27(12):1872-1875. 被引量:3
  • 2Wu T D, Chen K S. A reappraisal of the validity of the IEM model for backscattering from rough surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2004,42 ( 4 ) : 743- 753
  • 3Oh Y, Sarabandi K, Ulaby F T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing,1992, 30(2) :370-382
  • 4Oh Y, Sarabandi K, Ulaby F T. An inversion algorithm for retrieving soil moisture and surface roughness from polarimetric radar observation. In: Proceeding of International Geoscience and Remote Sensing Symposium, New York: IEEE, 1994. 1582-1584
  • 5Oh Y, Sarabandi K,Ulaby F T. Semi-empirical model of the ensemble averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Transactions on Ceoscience and Remote Sensing, 2002,40(6) : 1348-1355
  • 6Oh Y. Quantitative retrieval of soil moisture content and surface roughness from muhipolarized radar observations of bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(3) :596-601
  • 7Dubois P, Van Zyl J, Engman T. Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4):915-926
  • 8Baghdadi N, Zribi M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. International Journal of Remote Sensing, 2006, 27 (18) : 3831- 3852
  • 9Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Massachusetts: Addlson-Wesley Pub Co, 1989
  • 10Holland J H. Adaptation in Natural and Artificial Systems. 2nd Edition. Cambridge, MA:MIT Press, 1992

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部