期刊文献+

最大目标频繁模式挖掘算法研究 被引量:2

The Research of Maximum Target Frequent Pattern Mining Algorithm
下载PDF
导出
摘要 传统的频繁模式挖掘算法往往会得到成百上千的结果模式,面对繁多的频繁模式用户通常要经过“二次挖掘”才能得到有用的目标模式。怎样根据用户需求直接挖掘用户感兴趣的目标模式是该文的研究目标。文章在FP-树的基础上设计了紧缩的、非冗余的TFP-树,它能有效过滤与目标模式无关的项和事务,而仅保留与目标模式相关的信息,缩小TFP-树的大小规模。同时根据TFP-树的规律和特点,笔者设计了最大目标频繁模式挖掘算法,算法的结果模式具有以下两个特点:(1)满足用户需求的目标模式;(2)最大模式。该实验结果验证了TFP-树算法是有效的,而且显著改善了FP-树算法的性能。 Traditional frequent pattern mining algorithms always produce hundreds of result patterns,so facing numerous frequent patterns,users have to mine second time to get the useful target patterns.How to directly mine the target patterns which is the users interested in is this paper's research motive.Basing on the frequent pattern tree(FP-tree),it designs a compressed and non-redundant target frequent pattern tree(TFP-tree).TFP-tree can filter the items and transactions which doesn't contribute to the target pattern,instead,it only preserves the related information,so the size of the TFP-tree is greatly reduced.According to the TFP-tree's properties,we put forward a maximum target frequent pattern mining algorithm,which have contributions in following two things:(1)directly mining target patterns which can satisfy the user's require;(2)mining the maximum patterns.The experiments results show that TFP-tree is very effective and it also can greatly improve the FP-tree's performance.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第33期184-188,共5页 Computer Engineering and Applications
基金 国家自然科学基金项目资助(编号:30170231 60203027) 国家863高技术研究发展计划项目(编号:2002AA135230-D)
关键词 数据挖掘 频繁模式 最大目标频繁模式 TFP-树 FP-树 data mining,frequent pattern,maximum target frequent pattern,TFP-tree,FP-tree
  • 相关文献

参考文献9

  • 1R Agrawal et al. Mining association rules between sets of items in large databases. SIGMOD, 1993
  • 2R Agrawal,R Srikant.Fast algorithms for mining association rules.VLDB, 1994
  • 3F Korn et al.Ratio rules:A new paradigm for fast,quantifiable data mining. VLDB, 1998
  • 4E-H Han et al. Scalable parallel data mining for association rules.SIGMOD, 1997
  • 5C Silverstein et al.Scalable techniques for mining causal structures.VLDB, 1998
  • 6M Klemettinen et al. Finding interesting rules from large sets of discovered association rules. CIKM,1994
  • 7J.Han,J Pei,Y Yin. Mining frequent patterns without candidate generat ion.SIGMOD'00, Dallas, TX, 2000-05
  • 8史忠植.高级人工智能[M].北京:科学出版社,1997.60-100.
  • 9史忠植.知识发现[M].北京:清华大学出版社,2001..

共引文献47

同被引文献13

  • 1秦亮曦,史忠植.SFPMax——基于排序FP树的最大频繁模式挖掘算法[J].计算机研究与发展,2005,42(2):217-223. 被引量:26
  • 2秦亮曦,李谦,史忠植.基于排序FP-树的频繁模式高效挖掘算法[J].计算机科学,2005,32(4):31-33. 被引量:13
  • 3陈耿,朱玉全,宋余庆,陆介平,孙志挥.基于频繁模式树的约束最大频繁项目集挖掘算法研究[J].应用科学学报,2006,24(1):64-69. 被引量:4
  • 4Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database[C]//Proc of 1993 ACM SIGMOD Cord on Management of Data, 1993:207-216.
  • 5Han J, Pei J, Yin Y. Mining Frequent Patterns without Candidate Generation[C]//Proc of the 2000 ACM SIGMOD Int'l Conf on Management of Data, 2000:1-12.
  • 6Bayardo R J. Efficiently Mining Long Patterns from Databases[C]//Proc of the 1998 ACM SIGMOD Int'l Conf on Management of Data, 1998: 85-93.
  • 7http://fuzzy, cs. uni-magdeburg/-borgelt.
  • 8Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]//Proc of the 20th Int'l Conf on Very Large DataBases, 1994 : 487-499.
  • 9Agrawal R,Imielinski T,Swami A. Mining Association Rules Between Sets of Items in Large Database[A]. Proc of the 1993 ACM SIGMOD Conf on Management of Data[C]. 1993. 207-216.
  • 10Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation[A]. Proc of the 2000 ACM SIGMOD Int'l Conf on Management of Data[C]. 2000. 1-12.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部