摘要
介绍了基本的贝叶斯分类模型和贝叶斯信念网络模型,对网络模型的学习进行了讨论。并从实际出发,提出了几种可以简化模型结构、降低学习复杂性的可行方法,简要说明了这些方法在网络模型中的应用。对贝叶斯分类模型的准确性及其主要特点进行了分析。
The nakve Bayesian classification model and the Bayesian belief networks model are introduced.The learning of a belief network is discussed.Some feasible methods that can simplify the model structure and reduce the learning complexity are proposed,and the application of these methods to the belief network is explained briefly.The accuracy and the main features of Bayesian classification models are analyzed.
出处
《计算机工程与应用》
CSCD
北大核心
2004年第33期195-197,共3页
Computer Engineering and Applications
关键词
数据挖掘
分类预测
贝叶斯方法
信念网络
data mining,classification and prediction,beyes theorem,belief network