期刊文献+

瓦里关山大气CO本底变化 被引量:25

Background variation in atmospheric carbon monoxide at Mt. Waliguan, China
下载PDF
导出
摘要 利用1992 01~2002 12期间的实测资料,分析了瓦里关全球基准站(36°17′N,100°54′E,海拔3816m)大气CO本底特征,并探讨了与源汇过程的关系.结果表明,瓦里关山大气CO体积分数本底范围与北半球平均水平基本相符,但增长趋势及年增长率波动与北半球平均状况并不完全一致,多年平均季节变化与同纬度海洋边界层(MBL)参比值以及北半球平均值也有较大差异,是所在地区多种CO源汇和大气输送共同作用的结果.瓦里关山大气CO本底观测资料既能体现亚洲内陆地域特点又具有全球代表性,辅以其它相关资料,还可进一步揭示中国内陆高原大气CO本底特征的成因. By using observational data during the period of January 1992~December 2002 at Waliguan Observatory (36°17′N, 100°54′E, 3816m asl), characteristics of atmospheric CO background as well as potential relationship to sources and sinks, was studied. Results indicated that, the CO concentration distribution coincided with average of Northern Hemisphere. However, CO increase trend and growth rates fluctuation did not come up to the averages of the Northern Hemisphere. The CO average seasonal cycle has a notable discrepancy to the Marine Boundary Layer (MBL) reference at similar latitude band and the Northern Hemisphere average. The unique CO characteristics at Waliguan probably attributed to joint influence of multiple sources, sinks, as well as air mass transport from the surrounding areas. The CO observational data obtained at Waliguan possess Asian mainland behavior with global representativeness. It can further interpret the formation of CO background characteristics in the inland plateau of China and can provide other relevant information.
出处 《环境科学学报》 CAS CSCD 北大核心 2004年第4期637-642,共6页 Acta Scientiae Circumstantiae
基金 联合国全球环境基金(GLO-91-G32) 日本文部科学省学术振兴会JSPS博士后研究基金(PB01736) 中华人民共和国国家科技部基础性工作项目(G99-A-07)
关键词 CO 大气污染物 对流层 MBL atmospheric CO background variation source and sink regional features
  • 相关文献

参考文献22

  • 1Daniel J S, Solomon S. On the climate forcing of carbon monoxide[J] . J of Geophysical Research, 1998, 103(D11): 13249-13260
  • 2Thompson A M, Cicerone R J. Possible perturbations to atmospheric GO, CH4, and OH[J]. J of Geophysical Research, 1986, 91(D10): 10853-10864
  • 3Novelli P C, Masarie K A, Lang P M. Distributions and recent changes of CO in the lower troposphere[J]. J of Geophysical Research, 1998, 103(D15): 19015-19033
  • 4Novelli P C, Elkins J W, Steele P. The development and evaluation of a gravimetric reference scale for measurements of atmospheric CO[J]. J of Geophysical Research, 1991, 96(D7): 13109-13121
  • 5Novelli P C, Connors V S, Reichle H G, et al. An internally consistent set of globally distributed atmospheric CO mixing ratios developed using results from an inter-comparison of measurement[J]. J of Geophysical Research, 1998, 103(D15): 19285-19293
  • 6Masarie K A, Langenfelds R L, Allison C E, et al. NOAA/CSIRO flask air intercomparison experiment: A strategy for directly assessing consistency among atmospheric measurements made by independent laboratories[ J ]. J of Geophysical Research, 2001, 106(D17
  • 7WMO. World Data Center for Greenhouse Gases Data Summary[ R]. Tokyo, Japan, WMO/WDCGG Report, 2003, 27:1-92
  • 8Zhou L X, Tang J, Wen Y P, et al. The impact of local winds and long-range transport on the continuous carbon dioxide record at Mount Waliguan, China[J]. Tellus, 2003, 55B(2): 145-158
  • 9CMDL. Climate Monitoring and Diagnostic Laboratory, 2000-2001 Summary Report[R]. Boulder, Colorado, USA, NOAA/CMDL Report, 2002, 26:28-50
  • 10Dlugokencky E J, Dutton E G, Novelli P C, et al. Changes in CH4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux[J]. Geophys Res Lett, 1996, 23:2761-2764

二级参考文献50

  • 1温玉璞,徐晓斌,邵志清,季秉法,朱庆斌.用非色散红外气体分析仪进行大气CO_2本底浓度的测量[J].应用气象学报,1993,4(4):476-480. 被引量:24
  • 2Bakwin P S, et al. Determination of the isotopic (^13 C/^12 C) discrimination by terrestrial biology from a global network of observations[J]. Global Biogeochemical Cycles, 1998,12(3) :555--562.
  • 3Tans P P, et al. Oceanic ^13C/^12C observations: A new window on ocean CO2 uptake[ J]. Global Biogeochemical cycles, 1993,7(2):353--368.
  • 4Tans P P, et al. Carbon cycle research after Kyoto[ J ]. Tel lus, 1999,51 B:562--571.
  • 5Bousquet P, et al. Inverse modeling of annual atmospheric CO2 sources and sinks. 1. Method and control inversion,2. Sensitivity study[J]. J of Geophysical Research, 1999,104( D21 ) : 26161--26193.
  • 6Ciais P, et al. Partitioning of ocean and land uptake of CO2 as inferred by σ^13 C measurements from the CMDL global air sampling network[J] .J of Geophysical Research, 1995a, 100(D3) :5051--5070.
  • 7Ciais P, et al. A large Northern Hemisphere terrestrial CO2 sink indicated by ^13C/^12C of atmospheric CO2[J]. Science, 1995b, 269:1098--1102.
  • 8WMO. Strategy for the Implementation of the Global Atmosphere Watch Programme(2001--2007), a contribution to the implementation of the WMO long-term plan[Z]. Geneva,2001, (142) : 1--21.
  • 9Pearman G 1, et al. Global transport and inter-reservoir exchange of carbon dioxide with particular reference to stable isotopic distributions[J] .J Atmos Chem., 1986,4:81--124.
  • 10Tans P P, et al. Feasible Global Carbon Cycle Observing System: a plan to decipher today's carbon cycle based on observations[J].Global Change Biology, 1996,2:309--318.

共引文献59

同被引文献326

引证文献25

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部