期刊文献+

基于瞬时负荷统计特性检测电能质量扰动源 被引量:1

Detection of power quality disturbance based on statistical characteristics of instantaneous load
下载PDF
导出
摘要 提出一种基于检测点产生的瞬时负荷统计特性快速确认扰动源的方法,展示了该原理在谐波、电压凹陷、电压膨胀、瞬间电压降落四种扰动,在MATLAB下的仿真和计算结果。结果表明在每种情况下此方法都可以对扰动源进行迅速准确的检测。同时还对每种情况计算电压与实际电压的偏离程度进行了分析,并求出了各种情况下的电压偏离方差。最后,根据扰动源产生原因对扰动源类型的识别进行了研究。 This paper provides a new method for fast qualitatively detecting the disturbance sources, which is based on their statistical instantaneous characteristics. There are four examples imitated under MATLAB including harmonics, voltage sag, voltage swell, short-time transform of voltage dip. The results indicate that this new method can detect the disturbance sources accurately. This paper also analyses the disturbed degree of voltage of every disturbance sources and their disturbed deviation and the methods to identify every kind of disturbance sources and classify their causes.This program is supported by National Natural Science Foundation of China(No.5017702)
作者 高瑛 杨洪耕
出处 《继电器》 CSCD 北大核心 2004年第17期11-15,共5页 Relay
基金 国家自然科学基金(50177021)资助项目
关键词 电力系统 电能质量 扰动源 瞬时负荷 统计特性 仿真 disturbance source instantaneous load parameter disturbed deviation power quality
  • 相关文献

参考文献1

二级参考文献3

  • 1Perunicic B,IEEE Proc ICHQPW,1998年,77页
  • 2Pillay P,IEEE Proc ICHQP,1996年,625页
  • 3秦前清,实用小波分析,1994年

共引文献47

同被引文献15

  • 1王学峰,周俊宇.用小波变换技术定位输电线路故障[J].高电压技术,2006,32(1):84-87. 被引量:13
  • 2张全明,刘会金,周新启,王亚军.电能质量信号的小波软阈值去噪方法[J].高电压技术,2006,32(1):99-101. 被引量:34
  • 3吕广强,赵剑锋,程明,许扬.配电网动态电能质量问题及其解决方案[J].高电压技术,2007,33(1):53-56. 被引量:30
  • 4Santoso S, Power E J, Hofmann P. Power quality assessment via wavelet transform analysis [J]. IEEE Trans on PWRD, 1996, 11(2): 924-930.
  • 5Huang S J, Hsieh C T, Huang C L. Application of wavelets to classify power system disturbances [J]. Electric Power System Research, 1998, 47(2): 87-93.
  • 6Gauada A M, Salama M M A, Sultan M R, et al. Power quality detection and classification using wavelet-multiresolution signal decomposition[J]. IEEE Trans on PWRD, 1999, 14(4): 1469- 1476.
  • 7Daniels R F. Power quality monitoring using neural networks [C]. Proceedings of the First International Forum on Applications of Neural Networks to Power Systems. [S. 1. ]. 1991: 195-197.
  • 8Perunicic B, Mallini M, Wang Z, et al. Power quality disturbance detection and classification using wavelets and artificial neural network[C]. 8th International Conference on Harmonics and Quality of Power Proceedings. [S. 1. ]. 1998:77 82.
  • 9Lin C H, Tsao M C. Power quality detection with classification enhaneihle wavelet prohahilistie network in a power system [J]. lEE Proc-Gener Transm Distri, 2005, 152(6): 969-976.
  • 10Swart P H, Case M J, Van Wyk J D. On techniques for localization o- sources producing distortion in electric power networks[J]. European Transactions on Power, 1994, 4 (6) 485- 490.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部