期刊文献+

基于最佳鉴别变换的HMM手写数字字符识别 被引量:3

Handwritten Character Recognition Using HMM Based on Optimal Discriminant Transformation
下载PDF
导出
摘要 基于隐马尔可夫模型 (HMM)的手写字符识别方法是近年来的一个研究热点 ,针对 HMM编码稳定性和建模过程复杂的问题 ,提出了一种新方法 ,即采用统计不相关最佳鉴别变换对模式进行特征抽取和降维 ,获得最佳鉴别特征向量 ,并在此基础上对各最佳鉴别方向的投影结果进行编码 ,作为 HMM的观测值序列 ,由于统计不相关最佳鉴别变换保证了变换特征向量集类内散布最小 ,类间散布最大的条件 ,使 HMM编码的稳定性和模式的可分性得到明显改善 ,通过对美国国家邮政局 Handwritten character recognition using the hidden Markov model (HMM) has been an active research topic for the past decade. One of the major problems, however, is that the handwritten characters may not exhibit consistent patterns due to different people's different writing styles. To enhance HMM's encoding stability and to reduce its modeling complexity, we propose a new approach in this paper. Specifically, we first obtain a set of uncorrelated optimal discriminant vectors by conducting feature extraction and dimension reduction using the uncorrelated Foley-Sammon transformation. Next, using a new feature space spanned by the optimal discriminant vectors, we obtain the projection coefficients of the raw data onto this new feature space. We then use these coefficients to form the observation sequence of the HMM. Because the uncorrelated Foley-Sammon transformation ensures minimum intra-class distance and maximum inter-class distance, it significantly improves HMM's encoding stability and difference classes' separability. In fact, the transformation allows different characters to be separable in many projection directions. To validate the accuracy and robustness of the proposed approach, we conduct experiments on the widely used US Postal Service (USPS) data set. Experiments show that the integration of the uncorrelated Foley-Sammon transformation and the HMM performs very well, achieving a recognition rate of 92%. It not only is better than regular HMM, but also is superior to the widely used nerual network based approaches.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第8期1008-1013,共6页 Journal of Image and Graphics
关键词 模式识别 手写字符识别 最佳鉴别变换 编码 隐马尔可夫模型 handwritten character recognition, optimal discriminant transformation, encode, hidden Markov models
  • 相关文献

参考文献12

  • 1Rabiner L R. A tutorial on hidden Markov models and selected application in speech recognition[J]. Proceedings of IEEE ,1989,77(2) :257-286.
  • 2Schuster M, Rigoll G. Fast on-line video image sequence recognition with statistical methods[A]. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing[C], New York, 1996:450-454.
  • 3Samaria F, Fallside F. Face indentification and feature extraction using hidden Markov models [A]. In: Image Processing Theory and Applications[C]. Amsterdam: Elsevier Science Publishers, 1993 : 295 - 302.
  • 4Povlow B. R, Dunn S M. Texture classification using noncausal Hidden Markov Models [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995,17(10) :295-302.
  • 5Agazzi, Kuo O E, Levin S S, et al. Connected and degraded text recognition using planar hidden Markov models [A]. In:Proceedings of the International Conference on Acoustics,Speech, and Signal Processing[C], Minneapolis,USA 1993, 5:113-116.
  • 6张引,潘云鹤.工程图纸自动输入字符识别的二维隐性马尔可夫模型方法[J].计算机辅助设计与图形学学报,1999,11(5):403-406. 被引量:8
  • 7冯兵,丁晓青,吴佑寿.HMM方法识别脱机手写汉字[J].模式识别与人工智能,2002,15(1):84-88. 被引量:8
  • 8Duda R O, Hart P E,Stork D G. Pattern Classification(setond edition)[M], New Jersey: John Wiley & Sons, Inc. , 2001.
  • 9Foley D H, Sammon J W. An optimal set of discriminant vectors[J]. IEEE Transactions on Computers, 1975,24(3) : 281- 289.
  • 10Duchene J, Lecereq S. An optimal transformation for discriminant and principal companent analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(6) :978-983.

二级参考文献16

共引文献25

同被引文献53

  • 1李富裕,李言俊,张科.链码技术在景象图像特征提取中的应用[J].中国图象图形学报,2008,13(1):114-118. 被引量:11
  • 2芮挺,沈春林,丁健,张金林.基于主分量分析的手写数字字符识别[J].小型微型计算机系统,2005,26(2):289-292. 被引量:22
  • 3苗夺谦,张红云,李道国,王真.基于主曲线的脱机手写数字识别[J].电子学报,2005,33(9):1639-1643. 被引量:14
  • 4李宏东,姚天翔.模式分类.第二版.北京:机械工业出版社,2003
  • 5Quinlan J R. Induction of decision trees. Machine Learning, 1986 (1):81-106
  • 6Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation. Parallel Distributed Processing. Cambridge, MA: MIT Press, 1986
  • 7DeJong K A, Spears W M, Gordon D F. Using genetic algorithms for concept learning. Machine Learning, 1993, 13:161- 188
  • 8Langley P, Iba W, Thompson K. An analysis of Bayesian classifiers// AAAI(1990). 1990:223-228
  • 9Cover T M, Hart P E. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967,13 : 21- 27
  • 10Pawlak Z. Rough Classification. Int. J Man Machine Studies, 1984,20:469-483

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部