摘要
本文采用基于Schr(?)dinger方程流体动力学相似模型的变分微扰法计算了弱时间简谐电场中类氢原子H、He^+、Li^(+2)、Be^(+3),B^(+4)基态(100)的扰动波函数以及极化率与第一共振频率,讨论了电子云随时间的变化。结果表明,极化率与第一共振频率的计算值与精确值符合得很好;在应用变分微扰法计算极化率时,振幅微扰项∈与幅角项S是同等重要的,这是Askar等人在文献[8]中宣布将要进行的工作之一。
In this paper the variational perturbation scheme based on hydrodynamic analogy to Schrodinger equation is adopted and the perturbed wavefunctions for the hydrogen-like atoms H, He+, Li+2, Be+3,B+4 in their ground state (100)in a small and time harmonic electric field and the polarizabities and the 1st resonant frequences are calculated. And the variation of the electronic probability with time is also discussed. It is shown that the calculated results of the polarizability and the 1st resonant frequence are in good agreement with the exact data and that ∈ and S play the same important role in the calculation of the polarizability by using this scheme.
出处
《计算物理》
CSCD
北大核心
1993年第1期37-45,共9页
Chinese Journal of Computational Physics
基金
国家自然科学基金
教委博士点基金
关键词
变分微扰法
基态
类氢原子
波函数
hydrodynamic analogy to Schrodinger equation, variational perturbation scheme, ground state.