摘要
在动量空间中具有定域势的Faddeev方程是二维积分方程,在破裂过程和三体散射一类的连续谱情况下,方程的积分核是奇异的。本文根据奇异积分方程一般理论提出一种求解二维方程的数值方法。实践证明数值解是收敛的,全运动学微分截面的计算值与实验数据十分符合。
Faddeev equations with local potentials in the momentum space are two-variable integral equations whose kernels have singularities in the case of break-up proceses and three-body scattering. In the frame of singular integral equation theory a numerical technique for solving the two-variable equations is presented. The practice shows that numerical solutions converge. Differential Cross-sections for complete kinematics are obtained. It is clear that the aqreement between the theoretical results and the experimental ones is very well.
出处
《计算物理》
CSCD
北大核心
1993年第4期385-395,共11页
Chinese Journal of Computational Physics
关键词
Faddeev方程
奇异积分方程
数值解
three-body problem, Faddeev equation, singular integral equation, inkex of a singular equation, complete kinematics.