期刊文献+

前馈神经网络隐层评测问题的研究 被引量:2

Study on Hidden Layer Evaluation for Feed-Forward Neural Networks
下载PDF
导出
摘要 分析了隐层输出向量组生成的表示空间与期望输出向量组生成的目标空间.通过计算隐单元的误差补偿值,对以隐层生长方式构建网络时,每个隐单元的误差补偿性能以及隐单元性能最优的充分必要条件进行了研究.结果表明:表示空间与目标空闽维数、隐单元数目以及每个隐单元的误差补偿效率决定了前馈神经网络隐层的评测因素.最后定义了隐层品质因子、隐层有效系数、隐单元剩余度和隐层评价因子,并通过对典型前馈网络的考察,验证了该评测方法的合理性和有效性. The representation space and the target space, subspaces generated respectively by output vectors of hidden layer and expected output vectors, were analyzed. For hidden-layer-growing construction method, the error compensation performance of hidden units and the sufficient and necessary condition for the optimal performance of hidden units were investigated by calculating their error compensation values. The investigation shows that the evaluation factors for the hidden layer of a feed-forward neural network are composed of the dimensions of representation space and target space, the number of hidden units, and the error compensation efficiency of each hidden unit. Finally, the quality factor of hidden layer, the efficient coefficient of hidden layer, the redundancy of hidden units and the evaluation factor of hidden layer were defined, and the rationality and validity of the evaluation method were verified by reviewing some typical feedforward neural networks.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2004年第6期668-672,共5页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(69362001)
关键词 误差补偿值 隐层生长 隐层评测参数 三层前馈神经网络 three-layered feed-forward neural networks hidden layer growing error compensation performance hidden layer evaluation parameters
  • 相关文献

参考文献13

  • 1Suykens J S K, De Moor B, Vandewalle J. Robust local stability of multi-layer recurrent neural networks[J]. IEEE Trans on Neural Networks, 2000,11 (1):222-229.
  • 2Cybenko G. Approximation by superpositions of a sigmoidal function [J]. Mathematical Control Signal Systems, 1989, 2(4): 303-314.
  • 3Girosi F, Poggio T. Networks and the best approximation pro-perty [J]. Biological Cybernetics, 1990,63(3): 169-179.
  • 4Park J, Sandberg I W. Universal approximation using radial basis function networks [ J ]. Neural Computation, 1991, 3(2): 246-257.
  • 5Baum E B. On the capabilities of multilayer perceptrons[J]. Journal of Complexity, 1988, 4(3): 193-215.
  • 6Baum E B, Haussler D. What size net gives valid geralization?[J]. Neural Computation, 1989, 1(1):151-160.
  • 7Akaike H. A new look at the statistical model identification [J]. IEEE Transactions on Automatic Control, 1974, AC-19: 716-723.
  • 8Sietsma J, Dow R J F. Creating artificial neural networks that generalize [J]. Neural Networks,1991, 4(1): 67-79.
  • 9Fujita O. Statistical estimation of the number of hidden units for feedforward neural networks [J].Neural Networks, 1998,11 ( 5 ): 851-859.
  • 10Fujita O. Optimization of the hidden units function in feedforward neural networks [J]. Neural Networks, 1992, 5(5): 755-764.

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部