期刊文献+

关于孤立子的研究 被引量:4

Research on solitons
原文传递
导出
摘要 首先简单回顾了光滑孤立子、尖孤立子、紧孤立子的发现过程.然后用动力系统分支方法和积分方法获得了4类方程的一些新孤立子解,这4类方程分别是著名的KdV方程、MKdV方程、Camassa-Holm方程和B(m,n)方程. Firstly the histories of the solitons,Peakons and compactons are reviewed simply,secondly by using the bifurcation and integral methods of dynamical systems the KdV,MKdV,CH and B(m,n) equations are investigated.Some new solitons,peakons and compactons are obtained.
作者 刘正荣
出处 《云南大学学报(自然科学版)》 CAS CSCD 2003年第3期207-211,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10261008).
  • 相关文献

参考文献15

  • 1[1]RUSSELL J S. Report of the committee on waves. Re port of the 7th Meeting of the British Association for the Advancement of Science. Liverpool: 1 838,417-496.
  • 2[2]RUSSELL J S. Report on waves. Report of the 14th Meeting of the British Association for the Advancement of Science. London: 1 844,311-390.
  • 3[3]KORTEWANG D J, de VRIES G. On the change ofroma of form of long waves advancing in a rectangularcanal, and on a new type of long stationary waves [ J ]. Philos Mag Ser, 1895, 39(5):422-443.
  • 4[4]ZABUSKY N J, KRUSKAL M D. Interation of solitons in a collisionless plasma and the recurrence of intial states[J ]. Phys Rev Lett, 1965, 15:240-243.
  • 5[5]CAMASSA R, HOLM D D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett, 1993, 71(11): 1 661-1 664.
  • 6[6]ROSENAU P, HYMAN J M. Compactons: Solitons with finite wavelength[J]. Physical Rev Lett, 1993, 70 (5) :564-567.
  • 7[7]LAMB G J. Elements of soliton theory[M]. New York: Joho wiley and Sons, 1980.
  • 8[8]LIU Zheng-rong, YANG Chen-xi. The application of bi furcation method to a higher-order KdV equation [ J ]. J Math Anal Appl, 2002, 275:1-12.
  • 9[9]COOPER F, SHEPARD H. Solitons in the Camassa Holm shallow water equation[J]. Phys Lett A, 1994, 194(14) :246-250.
  • 10[10]CONSTANTIN A, STRAUSS W A. Stability of the Carnassa-Holm solitons[J ]. J Nonlinear Sci, 2002, 12: 415-422.

同被引文献18

  • 1刘秀茹,王祖源,吴於人.水中孤波的探讨[J].大学物理,2004,23(11):6-11. 被引量:3
  • 2黎益,黎薰.解KdV方程的一个隐式差分格式[J].四川大学学报(自然科学版),1995,32(6):632-634. 被引量:6
  • 3饶泽浪,吴辛烨.孤立子的matlab数值计算及模拟[J].首都师范大学学报(自然科学版),2006,27(3):29-33. 被引量:4
  • 4郭柏灵,庞小峰.孤立波[M].科技出版社.
  • 5[1]DEY B. Domain wall solutions of KdV like equations with higher order nonlinearity [J]. J Phys A: Math Gen, 1986, 19:9-12.
  • 6[2]YANG Zhi-yan, JIANG Tao. Application of bifurcation method for generalized MKdV equation[J].云南大学学报(自然科学版),2002,24(1):16-20.
  • 7[4]JIANG Tao,YANG Zhi-yan,LIU Zheng-rong.Bounded traveling solution of a nonlinear equation[J].Kyungpook Math J,2003,43:113-125.
  • 8邬华谟 郭本瑜.非线性演化方程的一类三层差分格式.数值计算与计算机应用,1983,3(1):16-25.
  • 9严小圃 郭本瑜.KDV方程的一个跳点差分格式.高等学校计算数学学报,1988,12(4):345-351.
  • 10Greig I S,Morris J L L. A hopscotch method for the KDV equation[J]. Journal of computational phsics, 1976,20(2) : 64-80.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部