摘要
通过对M bius群的研究得到了 (1,2 ;C )中代数收敛性定理 ,即若 {Gi} i∈N=〈gil,… ,gir〉是 (1,2 ;C )中由r个元素生成的挠一致有界的离散非初等子群序列且 {Gi} i∈N 代数收敛于G ,则G是离散非初等的 .
The algebraic convergence theorem of subgroups in (1,2, C )is obtained by studying the Mbius groups, which reads:if G is the algebraic limit group of a sequence of nonelementary discrete and uniformly bounded torsion subgroups { G i} i∈N =〈g i1 ,…,g ir 〉in (1,2; C ), then G is nonelementary and discrete.
出处
《湖州师范学院学报》
2003年第6期6-8,共3页
Journal of Huzhou University
基金
国家自然科学基金资助项目 (10 2 710 4 3)
湖南省教委基金资助项目 (0 2C4 4 8)