期刊文献+

复流形上的CR-子流形

CR - Submanifolds of a Complex Manifold
下载PDF
导出
摘要 利用不变形式的方法对复流形上的CR—子流形进行了一定的研究。首先考虑外围空间是复空间型的情形,得到了子流形是平坦流形或CR—乘积的条件,进一步考虑外围流形为更一般的不定复空间型,得到了它的子流形是全纯子流形和类空全纯子流形的条件。 In this paper we study CR - submanifolds of a complex manifold using the method of the invariant form. First, we obtain the condition that a submanifold is a flat manifold or CR - product on the condition that peripheral space is a complex space form. Furthermore, we get the condition that its submanifold is holomorphic submanifold and space - like submanifold under the condition that peripheral manifold is indefinite complex space form.
出处 《湖北民族学院学报(自然科学版)》 CAS 2003年第3期17-20,共4页 Journal of Hubei Minzu University(Natural Science Edition)
基金 江西省自然科学基金(0011005).
关键词 复空间型 全纯子流形 CR-子流形 CR-乘积 类空子流形 complex space form holomorphic submanifold CR - submanifold CR - product space like submanifold
  • 相关文献

参考文献10

  • 1Bejancu A. CR - submanifolds of a Kaehler manifold Ⅰ [ J ]. Proc. AMS., 1978,69:135 - 142.
  • 2Yano K, Kon M. CR - submanifolds of a Kaehlerian and Sasakian manifolds[ M]. Boston: Birkhanser, 1983.
  • 3Bejancu A. Geometry of CR - submanifold[ M]. D. Reidel Publishing Company, 1986.
  • 4Sharma R,, Duggal K L. Mixed Foliate CR - submanifolds of Indefinite Complex Space Form[J]. Ann. Math. Pure Appl., 1987,149:103 ~ 111.
  • 5Yano K, Kon M. Generic submanifolds[J]. Ann. Math. Pura Appl. ,1980, 123:59~92.
  • 6Blair D E,Chen B Y.On CR- submanifolds of Hermitian manifolds[J]Israel J. Math, 1979,34:353 ~ 363.
  • 7Bejancu A. CR - submanifolds of a Kaehler manifold Ⅱ[J]. Trans. Amer. Math. Sic., 1979, 250:337 ~ 345.
  • 8Chen B Y. CR- submanifolds ofa Kaehler manifold Ⅱ[J]. J. Diff. Geom. ,1981, 16:493-509.
  • 9Chen B Y. CR-submanifolds ofa Kaehler manifold Ⅰ[J].J.Diff. Gcom. ,1981,16:305~322.
  • 10Barros M , Romero A. Indefinite Kaehler manifolds[ J ]. Math. Ann, 1982,261: 55 - 62.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部