期刊文献+

正格序半群的格序和

ON LATTICE-ORDERED SUM OF POSITIVE LATTICE-ORDERED SEMIGROUPS
下载PDF
导出
摘要 本文将〔1~2〕中关于全序半群的有序和的讨论推广到格序半群的情况,由一类正格序半群构造出一新的正格序半群并讨论了正格序半群的一些性质。 Let Γ be a upper semilattice. To each λ∈Γ we assign a positive lattice-orderedsemigroup with the least element e_λ such that for λ≠μ,S_λ and S_μ are disjoint, we denoted it byS=U λ∈Γ S_λ. We define an opration '。' in S as follows: If a∈S_λ, b∈S_μ, and λ=μ, then the opera-tion in S is the same as in S_λ, otherwise a?b=b?a={a if λ>μ b if λ<μ e_γ if λ‖μ and γ=λ?μThen we have Theorem I. S=Uλ∈Γ S_λ about multiplication '。' is a semigroup. We call S as lattice-orderedsum of {s_λ}_(λ∈Γ). It is an extension of orderial sum about total order semigroups in [1, 2]. Theorem 2. Define an ordering relation '≤' in S as follows: if λ=μ,the ordering relatio-nis the same as in S_λ; if λ<μ, then put a≤b. then S is a lattice-ordered semigroup about '≤' in other parts,we give some properties of lattice-ordered sum.
机构地区 江西大学数学系
出处 《江西大学学报(自然科学版)》 1993年第1期31-37,共7页
关键词 格序半群 格序和 格序不可约 lattice -ordered semigroup lattice-ordered sum lattice-ordered irreducible
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部