期刊文献+

F[x]-lattice basis reduction algorithm and multisequence synthesis 被引量:4

F[x]-lattice basis reduction algorithm and multisequence synthesis
原文传递
导出
摘要 By means of F[x]-lattice basis reduction algorithm, a new algorithm is presented for synthesizing minimum length linear feedback shift registers (or minimal polynomials) for the given mul-tiple sequences over a field F. Its computational complexity is O(N2) operations in F where N is the length of each sequence. A necessary and sufficient condition for the uniqueness of minimal polynomi-als is given. The set and exact number of all minimal polynomials are also described when F is a finite field. By means of F[x]-lattice basis reduction algorithm, a new algorithm is presented for synthesizing minimum length linear feedback shift registers (or minimal polynomials) for the given mul-tiple sequences over a field F. Its computational complexity is O(N2) operations in F where N is the length of each sequence. A necessary and sufficient condition for the uniqueness of minimal polynomi-als is given. The set and exact number of all minimal polynomials are also described when F is a finite field.
出处 《Science in China(Series F)》 2001年第5期321-328,共8页 中国科学(F辑英文版)
基金 This work was supported by the National Natural Science Foundation of China (Grant Nos. 19931010, G1999035804).
关键词 multisequence shift-register synthesis F[x]-lattice basis reduction algorithm reduced basis normal reduced basis. multisequence shift-register synthesis, F[x]-lattice basis reduction algorithm, reduced basis, normal reduced basis.
  • 相关文献

参考文献3

  • 1Robert W. Rycroft and Don E. Kash. The Complexity Challenge: Technological Innovation for the 21st Century[M].New York: A Cassell Imprint,1999. 112- 130.
  • 2Lewis M. Branscomb, Fumio Kodama, and Richard Florida, Editors. Industrializing Knowledge: University - industry linkages in Japan and the United States[M]. The MIT Press,Cress, Cambridge, Massachusetts, and London, England. 1999. 204 - 205.
  • 3Morten Steffensen, Everett M. Rogers, Kristen Speakman. Spin- offs from research centers at a research university[ J ]. Journal of Business Venturing, 1999, (15) : 93 - 111.

同被引文献41

  • 1王菊香,朱士信.F_p上周期序列S~∞与~∞的线性复杂度分析[J].计算机应用研究,2009,26(2):742-743. 被引量:6
  • 2牛志华,董庆宽,肖国镇.p^n-周期二元序列的线性复杂度与k-错线性复杂度[J].西安电子科技大学学报,2004,31(4):622-625. 被引量:1
  • 3DING Cun-sheng, XIAO Guo-zhen, SHAN Wei-juan. The stability theory of stream ciphers[ C]//Lecture Notes in Computer Science. Berlin:Springer, 1991.
  • 4HASSE H. Theorie der hoheren differentiale in einem algebraischen Funktiorienkorper mit vollkommenem Konstantenkorper bei beliebiger Charakteristik [ J ]. Journal Reine Angewandte Mathematik, 1936, 175:50-54.
  • 5NIEDERREITER H. Linear complexity and related complexity measures for sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 2003 : 1- 17.
  • 6MEIDL W, NIEDERREITER H. The expected value of the joint linear complexity of periodic muhisequences[ J]. Journal of Complexity, 2003, 19(1) :61-72.
  • 7MEIDL W, WINTERHOF A. On the joint linear complexity profile of explicit inversive multisequences [ J ]. Journal of Complexity, 2005, 21 (3) :324- 336.
  • 8XING Chao-ping, LAM K Y, WEI Zheng-hong. A class of explicit perfect multi-sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 1999:299- 305.
  • 9XING Cao-ping. Multi-sequences with almost perfect linear complexity profile and function fields over finite fields[ J]. Journal of Complexity, 2000, 16(4) :661-675.
  • 10ARMAND M A. Mulfisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer rings[ J]. IEEE Trans on Information Theory, 2004 , 50 ( 1 ) :220- 229.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部