期刊文献+

Connectivities of Minimal Cayley Coset Digraphs 被引量:2

Connectivities of Minimal Cayley Coset Digraphs
下载PDF
导出
摘要 we prove that the Connectivities of Minimal Cayley Coset Digraphs are their regular degrees. Connectivity of transitive digraphs and a combinatorial propertyof finite groups Ann., Discrete Math., 8 1980 61--64 Meng Jixiang and Huang Qiongxiang On the connectivity of Cayley digraphs, to appear Sabidussi, G. Vertex transitive graphs Monatsh. Math., 68 1969 426--438 Watkins, M. E. Connectivity of transitive graphs J. Combin. Theory, 8 1970 23--29 Zemor, G. On positive and negative atoms of Cayley digraphs Discrete Applied Math., 23 1989 193--195 Department of Mathematics,Xinjiang University,Urumpi 830046.APPLIED MATHEMATICS 3. Statement of Inexact Method Here we assume F to be continuousely differentiable. Inexact Newton method was first studied in the solution of smooth equations (see ). Now, such a technique has been widely used in optimizations, nonlinear complementarity problems and nonsmooth equations (see, and , etc.) In order to establish the related inexact methods,we introduce a nonlinear operator T(x): R n R n . Its components are defined as follows: (T(x)p) i=[HL(2:1,Z;2,Z] (x k+p k) i, if i∈(x k), H i(x k)+ min {(p k) i,F i(x k) Tp k}, if i∈(x k), F i(x k)+F i(x k) Tp k, i∈(x k).(3.1) Then, it is clear that the subproblem (2.5) turns to T(x k)p k=0.(3.2) In inexact algorithm, we determine p k in the followinginexact way ( see ). ‖T(x k)p k‖ υ k‖H(x k)‖,(3.3) where υ k is a given positive sequence. It is then obviously that (3.2),or equivalently (2.5), is a special case of (3.3) corresponding to υ k=0 . In particular, (3.3) can be used as a termination rule of the iterative process for solving (2.5). The following proposition shows the existence of λ k satisfying (2.4). Proposition 3.1. Let F be continuously differe ntiable. υ k is chosen so that υ k for some constant ∈(0,1). Then p k generated by (3.3) is a descent direction of θ at x k, and for some constant σ∈(0, min (1/2,1- holds θ(x k)-θ(x k+λ kp k) 2σλ kθ(x k)(3.4) for all sufficiently small λ k>0. Proof For simplification, we omit the lower subscripts k and denote (x k) i , H i(x k) , (BH(x k)p k) i , etc.by x i , H i , (BHp) i , etc. respectively. To estimate the directional derivative of θ at x k along p k , we divide it into three parts: D p k θ(x k)=H T(x k)BH(x k)p k=T 1+T 2+T 3,(3.5) where T 1=Σ i∈α k H i(BHp) i , T 2=Σ i∈β k H i(BHp) i , T 3=Σ i∈γ k H i(BHp) i . Consider i∈α k= k∪α -(x k) . In this case, we always have H i(BH(x)p) i=H i 2+H i(x i+p i) . If i∈ k , then H i(BHp) i -H i 2+|H i‖(T(x)p) i|. If i∈α -(x k) , then x i<0 . We have either x i+p i 0 , or x i+p i<0 . When x i+p i 0 , we get H i(BH(x)p) i -H i 2 .In the later case, x i+p i<0 , so H i(BH(x)p) i=-H i 2+|H i‖x i+p i|. Then, by elementary computation, we deduce that T 1 -Σi∈α kH i 2+Σ i∈α k|H i‖(T(x)p) i|.(3.6) Received March 1, 1995. 1991 MR Subject Classification: 05C25 we prove that the Connectivities of Minimal Cayley Coset Digraphs are their regular degrees. Connectivity of transitive digraphs and a combinatorial propertyof finite groups Ann., Discrete Math., 8 1980 61--64 Meng Jixiang and Huang Qiongxiang On the connectivity of Cayley digraphs, to appear Sabidussi, G. Vertex transitive graphs Monatsh. Math., 68 1969 426--438 Watkins, M. E. Connectivity of transitive graphs J. Combin. Theory, 8 1970 23--29 Zemor, G. On positive and negative atoms of Cayley digraphs Discrete Applied Math., 23 1989 193--195 Department of Mathematics,Xinjiang University,Urumpi 830046.APPLIED MATHEMATICS 3. Statement of Inexact Method Here we assume F to be continuousely differentiable. Inexact Newton method was first studied in the solution of smooth equations (see ). Now, such a technique has been widely used in optimizations, nonlinear complementarity problems and nonsmooth equations (see, and , etc.) In order to establish the related inexact methods,we introduce a nonlinear operator T(x): R n R n . Its components are defined as follows: (T(x)p) i=[HL(2:1,Z;2,Z] (x k+p k) i, if i∈(x k), H i(x k)+ min {(p k) i,F i(x k) Tp k}, if i∈(x k), F i(x k)+F i(x k) Tp k, i∈(x k).(3.1) Then, it is clear that the subproblem (2.5) turns to T(x k)p k=0.(3.2) In inexact algorithm, we determine p k in the followinginexact way ( see ). ‖T(x k)p k‖ υ k‖H(x k)‖,(3.3) where υ k is a given positive sequence. It is then obviously that (3.2),or equivalently (2.5), is a special case of (3.3) corresponding to υ k=0 . In particular, (3.3) can be used as a termination rule of the iterative process for solving (2.5). The following proposition shows the existence of λ k satisfying (2.4). Proposition 3.1. Let F be continuously differe ntiable. υ k is chosen so that υ k for some constant ∈(0,1). Then p k generated by (3.3) is a descent direction of θ at x k, and for some constant σ∈(0, min (1/2,1- holds θ(x k)-θ(x k+λ kp k) 2σλ kθ(x k)(3.4) for all sufficiently small λ k>0. Proof For simplification, we omit the lower subscripts k and denote (x k) i , H i(x k) , (BH(x k)p k) i , etc.by x i , H i , (BHp) i , etc. respectively. To estimate the directional derivative of θ at x k along p k , we divide it into three parts: D p k θ(x k)=H T(x k)BH(x k)p k=T 1+T 2+T 3,(3.5) where T 1=Σ i∈α k H i(BHp) i , T 2=Σ i∈β k H i(BHp) i , T 3=Σ i∈γ k H i(BHp) i . Consider i∈α k= k∪α -(x k) . In this case, we always have H i(BH(x)p) i=H i 2+H i(x i+p i) . If i∈ k , then H i(BHp) i -H i 2+|H i‖(T(x)p) i|. If i∈α -(x k) , then x i<0 . We have either x i+p i 0 , or x i+p i<0 . When x i+p i 0 , we get H i(BH(x)p) i -H i 2 .In the later case, x i+p i<0 , so H i(BH(x)p) i=-H i 2+|H i‖x i+p i|. Then, by elementary computation, we deduce that T 1 -Σi∈α kH i 2+Σ i∈α k|H i‖(T(x)p) i|.(3.6) Received March 1, 1995. 1991 MR Subject Classification: 05C25
作者 MENG JIXIANG
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1996年第4期497-500,共4页 高校应用数学学报(英文版)(B辑)
关键词 Connectivity Cayley coset digraph Connectivity, Cayley coset digraph
  • 相关文献

同被引文献12

  • 1孟吉翔,刘新.THE DIAMETERS OF ALMOST ALL CAYLEY DIGRAPHS[J].Acta Mathematicae Applicatae Sinica,1997,13(4):410-413. 被引量:1
  • 2张福基,黄琼湘.INFINITE CIRCULANTS AND THEIR PROPERTIES[J].Acta Mathematicae Applicatae Sinica,1995,11(3):280-284. 被引量:1
  • 3Robinson D J S.A course in the theory of groups. . 1982
  • 4Doorn E A V.Connectivity of Circulant Digraphs. J GraDh Theory . 1986
  • 5Meng Jixiang,Huang Qiongxiang.On the Connectivity of Cayley Digraphs. Combinatorics,Grap Theory,Algorithms and Applications . 1994
  • 6Faber V,Moore J W,Chen W Y C.Cycle prefix Digraphs for Symmetric Interconnection Networks. Networks . 1993
  • 7Hamidoune Y O.Surles Atoms Dun Graphe Oriente. Comptes Rendus de l Académie des Sciences . 1977
  • 8Zemor G.On Positive and negative Atoms of Cayley Digraphs. .
  • 9Watkins M.Connectivity of transitive graphs. Journal of Physical and Chemistry . 1970
  • 10Connectivities of Minimal Cayley Coset Digraphs高校应用数学学报B辑(英文版),1996.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部