期刊文献+

COMPLEX MONGE-AMPěRE EQUATIONS ON GENERAL DOMAINS

COMPLEX MONGE-AMPěRE EQUATIONS ON GENERAL DOMAINS
下载PDF
导出
摘要 The smooth solutions of the Dirichlet problems for the complex Monge-Ampère equations on general smooth domains are found,provided that there exists a C 3 strictly plurisub harmonic subsolution with prescribed boundary value.It is the smooth version of an existence theorem given by Bedford and Taylor. The smooth solutions of the Dirichlet problems for the complex Monge-Ampère equations on general smooth domains are found,provided that there exists a C 3 strictly plurisub harmonic subsolution with prescribed boundary value.It is the smooth version of an existence theorem given by Bedford and Taylor.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第3期268-278,共11页 高校应用数学学报(英文版)(B辑)
基金 National Natural Science Foundation of China(1 0 0 71 0 70 ) and Foundation of Zhejiang Education Counci
关键词 Complex Monge-Ampère equation Dirichlet problem maximum principle. Complex Monge-Ampère equation,Dirichlet problem,maximum principle.
  • 相关文献

参考文献8

  • 1Kolodziej,S.,The complex Monge-Ampèreequation,Acta Math.,1998,180:69-117.
  • 2Bedford,E. and Taylor,B. A.,Variational properties of the complex Monge-Ampèreequation, II:Intrinsic norm,Amer. J. Math.,1979,101:1131-1166.
  • 3Bedford,E. and Taylor, B. A.,The Dirichlet problem for the complex Monge-Ampèreequation, Invent. Math.,1976,37:1-44.
  • 4Hoffman,D., Rosenberg, H. and Spruck, J., Boundary value problem for surfaces ofconstant Gauss curvature,Comm. Pure Appl. Math., 1992,45:1051-1062.
  • 5Guan,B.,The Dirichlet problem for Monge-Ampère equations in non-convexdomains and spacelike hypersurface of constant Gauss curvature, Trans. A. M. S., 1998,350:69-117.
  • 6Guan,B. and Spruck,J.,Boundary value problem in Sn for surfaces of constant Gausscurvature,Ann.Math.,1993,138:601-624.
  • 7Caffaralli,L. A., Kohn,J. J.,Nirenberg,L.,et al.,The Dirichlet problem fornonlinear second-order equation II:complex Monge-Ampère equations,Comm. Pure Appl.Math., 1985,38:209-252.
  • 8Bedford,E. and Taylor,B. A.,A new capacity for plurisubharmonic function,ActaMath.,1982,149:1-40.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部