摘要
考虑在抽象空间中,微分系统z′=x′y′=f1(t,x,y)f2(t,x,y)=f(t,z)z(0)=x(0)y(0)=z0=x0y0弱解的局部存在性,其中f1、f2分别满足弱紧性条件与弱耗散性条件.得到的结果包含了文[2~4,6]的有关结果,是上述结果的改进和更一般化推广.
Abstract In this paper, we are concerned the problem of the problem of the local existence of weak solutions for z ′=x ′ y ′=f 1(t,x,y) f 2(t,x,y)=f(t,z) z(0)=x(0) y(0)=z 0=x 0 y 0 in abstract space E, where f 1, f 2 meet weak noncompact condition and weak dissipative condition respectively. The results in this paper extened and improved the results in .
出处
《工程数学学报》
CSCD
北大核心
1998年第1期79-83,共5页
Chinese Journal of Engineering Mathematics
基金
山东省自然科学基金