摘要
讨论了Poison子流形的一个有趣的性质:若P是Poison流形(Q,WQ)的Poison嵌入子流形,则在每一点x∈P处,通过适当选择可使P的横截Poison流形N1恰是Q的横截Poison流形的Poison嵌入子流形.反之,若P是(Q,WQ)的嵌入子流形,且在每一点x∈P处,存在x在Q中的邻域U和直积分解U=S×N1×N2,使得S是辛叶,N1×N2是横截Poison流形,S×N1是P中x的邻域,N1是N1×N2的Poison子流形。
The paper discusses an interesting property of Poisson submanifolds: If P isa Poisson embedding submanifold in (Q,W Q ), then at every point x∈P ,the transversal Poisson manifold N 1 in P is just Poisson embedding submanifold in the transversal Poisson manifold N in Q . Inversely, if P is a embedding submanifold in ( Q,W Q ), and at every point x∈P, there is a neighborhood U in Q and decomposition into direct product U=S×N 1×N 2 ,such that S is sympplectic leaf, N 1×N 2 is the transversal Poisson manifold, S×N 1 is the neighborhood at x in P,N 1 is Poisson submanifold in N 1×N 2, then P is Poisson submanifold in Q .
出处
《首都师范大学学报(自然科学版)》
1997年第3期1-3,共3页
Journal of Capital Normal University:Natural Science Edition
关键词
子流形
POISSON流形
嵌入
直积分解
邻域
性质
存在
Poisson manifold, Poisson embedding submanifold, symplectic leaf, transversal Poisson manifold.