期刊文献+

纳米磨削过程中加工表面形成与材料去除机理的分子动力学仿真 被引量:9

Mechanism of Material Removal and Surface Generation by Molecular Dynamics Analysis in Abrasive Processes
下载PDF
导出
摘要 目前 ,以线性断裂力学为基础的加工理论对解释微切削加工机理还存在不足 .分子动力学分析的方法在研究纳米尺度或原子尺度下的固体变形方面具有独特的优势 ;辅以压痕挤压机理分析 ,解释纳米磨削过程中加工表面形成和材料去除机理 .研究表明 :静水压力对非结晶变形程度影响很大 ;晶格重构原子与一部分非晶层原子堆积在磨粒的前上方 ,由于磨粒不断前移 ,最终形成磨屑而实现材料去除 ,处在磨粒前下方的非晶层原子在压应力的作用下与已加工表层断裂的原子键结合重构形成已加工表面变质层 ;变质层由内外两层组成 ,外层是非晶层 。 At present, the machining theory based on the elasticity and fracture mechanics can not explain micro-machining mechanism completely. Molecular dynamics analysis has the particular advantage in researching the solid deformation of atom-scale area. It can aid in surveying the force features of grinding and indentation, stress state and grinding temperature and then explaining the micro-scale mechanism of the material remove and surface generation. The research shows: The atoms of the reconstituting crystal lattice and non-crystal lattice are piled up on the front of abrasive grain, with the continuous advancement of the abrasive grain, the material are removed; The hydrostatic stress has a great impact on the degree of the reconstituting crystal lattice and the formation of the non-crystal atoms; The degenerative layer of the finish surface are reconstituted by the severe deformation crystal lattice and the non-crystal atoms in the grinding surface, it consists of the outer non-crystal layer and the inner lattice deformation layer.
出处 《纳米技术与精密工程》 CAS CSCD 2004年第2期136-140,共5页 Nanotechnology and Precision Engineering
关键词 纳米技术 纳米磨削 纳米压痕 分子动力学 表面形成 材料去除机理 nanometer grinding indentation molecular dynamics simulation experiment mechanism of material remove and surface generation
  • 相关文献

参考文献9

  • 1[1]Zhang Liang-chi,Hiroaki Tanaka.On the mechanics and physics in the nano-Indentation of silicon monocrystals [J].JSME International Journal,Series A,1999,42(4):546-559.
  • 2[2]Inamura T,Suzuki H,Takezawa N.Cutting experiment in a computer using atomic models of a copper crystal and a diamond tool[J].Int J JSPE,1991,25(4):259-266.
  • 3[3]Shimida S,Ikawa N,Ohmori G,et al.Molecular dynamics analysis as compared with experimental results of micromachining[ J ].Annals of the CIRP,1992,41(1):117-120.
  • 4[4]Komanduri R,Chandrasekaran N.A new method for molecular dynamics simulation of nanometric cutting[ J].Phil Mag B,1998,77(1):7-26.
  • 5[5]Rentsch R,Inasaki I.Molecular dynamics simulation for abrasive processes [J].Annals of the CIRP,1994,43(1):327-330.
  • 6[6]Tersoff J.Modeling soild-state chemistry:Interatomic potentials for multicomponent systems [J].Physical Review,1989,39(8)5 566-5 568.
  • 7[7]Allen M P,Tildesley D J.Computer Simulation of Liquids [M].Oxford:Clarendon Press,1987.
  • 8[8]Heermann D W.Computer Simulation Methods in Theoretical Physics.2nd Ed [ M ].Berlin,Germany:Springer-Verlag,1990.
  • 9[9]Tongdubaoqiu.Introduction to computer simulation[ J ].Solid State Physics(Japan),1989,17(3):141-148.

同被引文献180

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部