期刊文献+

有界强伪凸域上不同Dirichlet空间之间的复合算子

Composition Operator between Different Dirichlet Spaces on bounded Strongly Pseudoconvex Domains
下载PDF
导出
摘要 研究了有界强伪凸域上不同Dirichlet空间之间的复合算子,引入η-Carleson测度,利用它给出了有界或紧的复合算子Cφ∶Dp(Ω) Dq(Ω) We study composition operator between different Dirichlet Spaces on strongly pseudoconvex domains,defined the η-Carleson measure, and use it to characterize the boundedness or compactness of composition operator C_φ∶D^p(Ω)D^q(Ω).
作者 李颂孝
机构地区 嘉应学院数学系
出处 《嘉应学院学报》 2004年第3期5-8,共4页 Journal of Jiaying University
基金 浙江省自科基金项目(102025)
关键词 有界强伪凸域 复合算子 DIRICHLET空间 η-Carleson测度 Dirichlet Space Bounded Strongly pseudoconvex Domains Composition Operator
  • 相关文献

参考文献10

  • 1高进寿,贾厚玉.Carleson测度与Bloch的刻画[J].数学杂志,2002,22(3):323-328. 被引量:1
  • 2罗罗.Composition Operators Between the Weighted Dirichlet Spaces on Bounded Symmetric Domains of C^n[J].Chinese Quarterly Journal of Mathematics,1999,14(3):54-63. 被引量:2
  • 3[4]Smith W. Composition operators between Bergman and Hardy spaces[J]. Trans. Amer. Math. Soc., 1996, 348(6):2331-2348.
  • 4[5]Zhu Kehe. Operator Theory in Ftnction Space[M]. New York: Marcel Dekker, 1990.
  • 5[6]Li Huiping. Hankel operators on Bergman spaces of strongly psetdoconvex domains[J]. Intergral Equation operator theory, 1994, (19) :458 -476.
  • 6[7]Li Huiping, BMO. VMO and Hankel operators on the Bergman space of strongly pseudooonves domains[J]. Journal Functional Analysis, 1992,(106):375-408.
  • 7[8]Pavlovic M. Inequalities for the gradient of eighenfunctions of the invariant laplacian on the unit ball[J]. Indag. Math., 1991, (2):89-98.
  • 8[9]Bekolle D, Berger C.A, coburn L.A, etc. BMO in the Bergman metric on bounded symmetric domains[J]. J. Funct. Anal. 1990, (93):310-350.
  • 9[10]Halrmos, P.R.. Measure theory[M]. 1951.
  • 10[11]Krants S.G. Function theory of several complex variables[M]. New York: John Wiley and Sons, 1982.

二级参考文献15

  • 1[1]Zhu Kehe. Operator theory in function space[M]. New York: Marcel Dekker, 1990.
  • 2[2]Li Huiping. Hankel operators on Bergman spaces of strongly pseudoconvex domains[J]. Inter Equatoper Th, 1994, 19: 458~476.
  • 3[3]Stroethoff K. Besov-type characterizations for the Bloch space[J]. Bull Austral Math Soc, 1989, 39:405~420.
  • 4[4]Krantz S. G, Ma D. The Bloch functions on strongly pseudoconvex domains[J]. Indiana Univ MathJ, 988, 37: 145~165.
  • 5[5]Hu Zhang jian, Equivalent characterizations of Bloch functions[J]. Colloq Math, 1994, 64: 99~108.
  • 6[6]Li Songying. Trace ideal criteria for composition operators on Bergman spaces[J]. Amer J. Math,1995, 117: 1299~1323.
  • 7[7]Li Huiping. BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvexdomains J Funct Anal, 1992, 106: 375~408.
  • 8[8]Fefferman C. The Bergman kernel and hiholomorphous mapping of pseudoconvex domains[J]. InventMath, 1974, 26: 1~65.
  • 9[9]Krants S. G. Function theory of several complex variables[M]. New York: John Wiley and Sons,1982.
  • 10Zhu K H,Harmonic Analysis in China,1995年,287页

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部