摘要
The optimum quenching rates and annealing conditions to prepare near stoichiometrical (Nd,Pr)(12)(FeCoZr)(82)B-6 bonded magnets were investigated by using sub-overquenching and post annealing method. The quenching rates, annealing temperatures, and annealing time directly influence the microstructure and magnetic properties of alloy ribbons. The optimum magnetic properties of bonded magnets are achieved by melt spinning at 24 m (.) s(-1) wheel surface speed, annealing at 655 degreesC for 10 min, and bonding with 3.25% (mass fraction) epoxy. The best magnetic properties of remanence B-r, intrinsic coercivity H-ci and maximum energy product (BH)(max) are 0.669 T, 811 kA (.) m(-1), and 75 kJ (.) m(-3), respectively.
The optimum quenching rates and annealing conditions to prepare near stoichiometrical (Nd,Pr)(12)(FeCoZr)(82)B-6 bonded magnets were investigated by using sub-overquenching and post annealing method. The quenching rates, annealing temperatures, and annealing time directly influence the microstructure and magnetic properties of alloy ribbons. The optimum magnetic properties of bonded magnets are achieved by melt spinning at 24 m (.) s(-1) wheel surface speed, annealing at 655 degreesC for 10 min, and bonding with 3.25% (mass fraction) epoxy. The best magnetic properties of remanence B-r, intrinsic coercivity H-ci and maximum energy product (BH)(max) are 0.669 T, 811 kA (.) m(-1), and 75 kJ (.) m(-3), respectively.
基金
Projectsupportedby 863Project ( 2 0 0 1AA3 2 40 3 0 )