摘要
Effects of rare earth (RE) additions on microstructure and mechanical properties of the wrought AZ31 magnesium alloy were investigated. The results show that, by adding 0.3%, 0.6% and 1.0% RE elements, the as-cast microstructure can be refined, and the as-cast alloys′ elongation and tensile strength can be improved. After extrusion, the alloy with 0.3% and 0.6% RE additions obtain a finer microstructure and the best mechanical properties, but the alloy with 1.0% RE addition has the coarse Al-RE compound particles in grain boundaries which decreased elongation and tensile properties. Usually, Rare earth (RE) elements were used to improve the creep properties of aluminium-containing magnesium pressure die cast alloys at elevated temperatures. In this paper, it is also found that the high temperature strength of extruded materials can be increased by RE elements additions.
Effects of rare earth (RE) additions on microstructure and mechanical properties of the wrought AZ31 magnesium alloy were investigated. The results show that, by adding 0.3%, 0.6% and 1.0% RE elements, the as-cast microstructure can be refined, and the as-cast alloys′ elongation and tensile strength can be improved. After extrusion, the alloy with 0.3% and 0.6% RE additions obtain a finer microstructure and the best mechanical properties, but the alloy with 1.0% RE addition has the coarse Al-RE compound particles in grain boundaries which decreased elongation and tensile properties. Usually, Rare earth (RE) elements were used to improve the creep properties of aluminium-containing magnesium pressure die cast alloys at elevated temperatures. In this paper, it is also found that the high temperature strength of extruded materials can be increased by RE elements additions.
基金
ProjectsupportedbyNaturalScienceFoundationofGuangdongProvince ( 3 65 47)